• Title/Summary/Keyword: fuzzy vector

Search Result 419, Processing Time 0.029 seconds

Multi-modal Biometrics System Based on Face and Signature by SVM Decision Rule (SVM 결정법칙에 의한 얼굴 및 서명기반 다중생체인식 시스템)

  • Min Jun-Oh;Lee Dae-Jong;Chun Myung-Geun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.885-892
    • /
    • 2004
  • In this paper, we propose a multi-modal biometrics system based on face and signature recognition system. Here, the face recognition system is designed by fuzzy LDA, and the signature recognition system is implemented with the LDA and segment matching methods. To effectively aggregate two systems, we obtain statistical distribution models based on matching values for genuine and impostor, respectively. And then, the final verification is Performed by the support vector machine. From the various experiments, we find that the proposed method shows high recognition rates comparing with the conventional methods.

The Effect of Membership Concentration in FVQ/HMM for Speaker-Independent Speech Recognition

  • Lee, Chang-Young;Nam, Ho-Soo;Jung, Hyun-Seok;Lee, Chai-Bong
    • Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.7-16
    • /
    • 2005
  • We investigate the effect of membership concentration on the performance of the speaker-independent recognition system by FVQ/HMM. For the membership function, we adopt the result obtained from the objective function approach by Bezdek. Membership concentration is done by varying the exponent in the membership function. The number of selected clusters is constrained to two for the sake of cheap computational cost. Experimental results showed that the recognition rate has its maximum value when the membership function was taken to be inversely proportional to the distance of the input vector from the cluster centroid. When the membership concentration was two weak or too strong, the performance was found to be relatively poor as expected. Except these extreme cases, the membership concentration was not shown to affect the recognition rate significantly. This is in accordance with the general observation that the fuzzy system is not much sensitive. to the detailed shape of the membership function as long as it is overlapped over multiple classes.

  • PDF

Classification of Textured Images Based on Discrete Wavelet Transform and Information Fusion

  • Anibou, Chaimae;Saidi, Mohammed Nabil;Aboutajdine, Driss
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.421-437
    • /
    • 2015
  • This paper aims to present a supervised classification algorithm based on data fusion for the segmentation of the textured images. The feature extraction method we used is based on discrete wavelet transform (DWT). In the segmentation stage, the estimated feature vector of each pixel is sent to the support vector machine (SVM) classifier for initial labeling. To obtain a more accurate segmentation result, two strategies based on information fusion were used. We first integrated decision-level fusion strategies by combining decisions made by the SVM classifier within a sliding window. In the second strategy, the fuzzy set theory and rules based on probability theory were used to combine the scores obtained by SVM over a sliding window. Finally, the performance of the proposed segmentation algorithm was demonstrated on a variety of synthetic and real images and showed that the proposed data fusion method improved the classification accuracy compared to applying a SVM classifier. The results revealed that the overall accuracies of SVM classification of textured images is 88%, while our fusion methodology obtained an accuracy of up to 96%, depending on the size of the data base.

Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models

  • Mandal, Sukomal;Rao, Subba;N., Harish;Lokesha, Lokesha
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.112-122
    • /
    • 2012
  • The damage analysis of coastal structure is very important as it involves many design parameters to be considered for the better and safe design of structure. In the present study experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models are constructed using experimental data sets to predict the damage level of non-reshaped berm breakwater. The experimental data are used to train ANN, SVM and ANFIS models and results are determined in terms of statistical measures like mean square error, root mean square error, correla-tion coefficient and scatter index. The result shows that soft computing techniques i.e., ANN, SVM and ANFIS can be efficient tools in predicting damage levels of non reshaped berm breakwater.

Sequential Pattern Mining for Intrusion Detection System with Feature Selection on Big Data

  • Fidalcastro, A;Baburaj, E
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5023-5038
    • /
    • 2017
  • Big data is an emerging technology which deals with wide range of data sets with sizes beyond the ability to work with software tools which is commonly used for processing of data. When we consider a huge network, we have to process a large amount of network information generated, which consists of both normal and abnormal activity logs in large volume of multi-dimensional data. Intrusion Detection System (IDS) is required to monitor the network and to detect the malicious nodes and activities in the network. Massive amount of data makes it difficult to detect threats and attacks. Sequential Pattern mining may be used to identify the patterns of malicious activities which have been an emerging popular trend due to the consideration of quantities, profits and time orders of item. Here we propose a sequential pattern mining algorithm with fuzzy logic feature selection and fuzzy weighted support for huge volumes of network logs to be implemented in Apache Hadoop YARN, which solves the problem of speed and time constraints. Fuzzy logic feature selection selects important features from the feature set. Fuzzy weighted supports provide weights to the inputs and avoid multiple scans. In our simulation we use the attack log from NS-2 MANET environment and compare the proposed algorithm with the state-of-the-art sequential Pattern Mining algorithm, SPADE and Support Vector Machine with Hadoop environment.

Speed Control of Induction Motor for Electric Vehicles Using Fuzzy Controller (퍼지 제어기를 이용한 전기자동차 구동용 유도전동기의 속도제어)

  • 임영철;김광헌;장영학;나석환;위석오;양형렬
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.138-147
    • /
    • 1998
  • This paper describes design and implementation results of a fuzzy logic speed controller of EV(Electric vehicle)'s induction motor for the purpose of realizing comfortable driving. The fuzzy controller is suitable for speed control of EV since that without detailed knowledge about the induction motor, it is easier to design a well-performing speed control system with good stability. PWM wave for driving the induction motor is generated by space vector modulation method and all the control algorithms are realized digitally. The results of experiment show excellence of the proposed system and that the proposed system is appropriate to control the speed of induction motor for commercial EVs.

Solder Joint Inspection Using a Neural Network and Fuzzy Rule-Based Classification Method (신경회로망과 퍼지 규칙을 이용한 인쇄회로 기판상의 납땜 형상검사)

  • Ko, Kuk-Won;Cho, Hyung-Suck;Kim, Jong-Hyeong;Kim, Sung-Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.710-718
    • /
    • 2000
  • In this paper we described an approach to automation of visual inspection of solder joint defects of SMC(Surface Mounted Components) on PCBs(Printed Circuit Board) by using neural network and fuzzy rule-based classification method. Inherently the surface of the solder joints is curved tiny and specular reflective it induces difficulty of taking good image of the solder joints. And the shape of the solder joints tends to greatly vary with the soldering condition and the shapes are not identical to each other even though the solder joints belong to a set of the same soldering quality. This problem makes it difficult to classify the solder joints according to their qualities. Neural network and fuzzy rule-based classification method is proposed to effi-ciently make human-like classification criteria of the solder joint shapes. The performance of the proposed approach is tested on numerous samples of commercial computer PCB boards and compared with the results of the human inspector performance and the conventional Kohonen network.

  • PDF

Speed Estimation and Control of IPMSM Drive using NFC and ANN (NFC와 ANN을 이용한 IPMSM 드라이브의 속도 추정 및 제어)

  • Lee Jung-Chul;Lee Hong-Gyun;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.282-289
    • /
    • 2005
  • This paper proposes a fuzzy neural network controller based on the vector control for interior permanent magnet synchronous motor(IPMSM) drive system. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability This paper does not oかy presents speed control of IPMSM using neuro-fuzzy control(NFC) but also speed estimation using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. Thus, it is presented the theoretical analysis as well as the analysis results to verify the effectiveness of the proposed method in this paper.

Design of a Extended Fuzzy Information Retrieval System using User한s Preference (사용자의 선호도를 반영한 확장 퍼지 정보 검색 시스템의 설계)

  • 김대원;이광형
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.299-303
    • /
    • 2000
  • The goal of the information retrieval system is to search the docments which the user wants to obtain in fast and effiecient way. Many information retrieval models, including boolean models, vector models and fuzzy models based on the trasitional fuzzy set theory, have been proposed to achieve these kinds of objectives. However, the previous models have a limitation on the fact that they do not consider the users' preference in the search of documents. In this paper, we proposed a new extenced fuzzy information retrieval System which can handle the shortcomings of the previous ones. In the proposed model, a new similarity measure was applied in order to calculate the degree among documents, which can expliot the users' preference.

  • PDF

A Systematic Approach to Improve Fuzzy C-Mean Method based on Genetic Algorithm

  • Ye, Xiao-Yun;Han, Myung-Mook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.178-185
    • /
    • 2013
  • As computer technology continues to develop, computer networks are now widely used. As a result, there are many new intrusion types appearing and information security is becoming increasingly important. Although there are many kinds of intrusion detection systems deployed to protect our modern networks, we are constantly hearing reports of hackers causing major disruptions. Since existing technologies all have some disadvantages, we utilize algorithms, such as the fuzzy C-means (FCM) and the support vector machine (SVM) algorithms to improve these technologies. Using these two algorithms alone has some disadvantages leading to a low classification accuracy rate. In the case of FCM, self-adaptability is weak, and the algorithm is sensitive to the initial value, vulnerable to the impact of noise and isolated points, and can easily converge to local extrema among other defects. These weaknesses may yield an unsatisfactory detection result with a low detection rate. We use a genetic algorithm (GA) to help resolve these problems. Our experimental results show that the combined GA and FCM algorithm's accuracy rate is approximately 30% higher than that of the standard FCM thereby demonstrating that our approach is substantially more effective.