• Title/Summary/Keyword: fuzzy subsystem

Search Result 42, Processing Time 0.015 seconds

Design of Neuro-Fuzzy based Intelligent Inference Algorithm for Energy Management System with Legacy Device (비절전 가전기기를 위한 에너지 관리 시스템의 뉴로-퍼지 기반 지능형 추론 알고리즘 설계)

  • Choi, In-Hwan;Yoo, Sung-Hyun;Jung, Jun-Ho;Lim, Myo-Taeg;Oh, Jung-Jun;Song, Moon-Kyou;Ahn, Choon-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.779-785
    • /
    • 2015
  • Recently, home energy management system (HEMS) for power consumption reduction has been widely used and studied. The HEMS performs electric power consumption control for the indoor electric device connected to the HEMS. However, a traditional HEMS is used for passive control method using some particular power saving devices. Disadvantages with this traditional HEMS is that these power saving devices should be newly installed to build HEMS environment instead of existing home appliances. Therefore, an HEMS, which performs with existing home appliances, is needed to prevent additional expenses due to the purchase of state-of-the-art devices. In this paper, an intelligent inference algorithm for EMS at home for non-power saving electronic equipment, called legacy devices, is proposed. The algorithm is based on the adaptive network fuzzy inference system (ANFIS) and has a subsystem that notifies retraining schedule to the ANFIS to increase the inference performance. This paper discusses the overview and the architecture of the system, especially in terms of the retraining schedule. In addition, the comparison results show that the proposed algorithm is more accurate than the classic ANFIS-based EMS system.

KAUSAT-5 Development and Verification based on 3U Cubesat Standard Platform (3U 큐브위성 표준 플랫폼에 기반한 한누리 5호 개발 및 검증)

  • Song, Sua;Lee, Soo-Yeon;Kim, Hong-Rae;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.686-696
    • /
    • 2017
  • The major objective of this study is to develop and verify the KAUSAT-5 based on the modular 3U CubeSat standard platform. In the mechanical system design of a 3U standard platform, subsystem and micro equipment functions/performance should be integrated and miniaturized on micro-sized PCBs and electrical capability was maximized to accommodate multiple payloads. KAUSAT-5 is 3U-sized Cubesat which will be operated in Low Earth Orbit(LEO), which implements mainly two scientific missions; one is to observe the Earth through infrared camera and the other is to measure space radiation with a Geiger Muller tube. An additional mission is to verify the equipment(device) such as VSCMG and fuzzy logic-based MPPT internally developed. The results of ETB, qualification and acceptance level environmental tests were shown to verify standard platform and KAUSAT-5 Cubesat.