• Title/Summary/Keyword: fuzzy reasoning approach

Search Result 65, Processing Time 0.023 seconds

Intelligent Control of Mobile robot Using Fuzzy Neural Network Control Method (퍼지-신경망 제어기법을 이용한 Mobile Robot의 지능제어)

  • 정동연;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.235-240
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

An Intelligent Control of TRack Vehicle Using Fuzzy-Neural Network Control Method (퍼지-신경회로망 제어기법에 의한 궤도차량의 지능제어)

  • 신행봉;김용태;조길수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.210-215
    • /
    • 1999
  • In this paper, a new approach to the dynamic control technique for track vehicle system using fuzzy-neural network control technique is proposed. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle.

  • PDF

Fuzzy Petri-net Approach to Fault Diagnosis in Power Systems Using the Time Sequence Information of Protection System

  • Roh, Myong-Gyun;Hong, Sang-Eun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1727-1731
    • /
    • 2003
  • In this paper we proposed backward fuzzy Petri-net to diagnoses faults in power systems by using the time sequence information of protection system. As the complexity of power systems increases, especially in the case of multiple faults or incorrect operation of protective devices, fault diagnosis requires new and systematic methods to the reasoning process, which improves both its accuracy and its efficiency. The fuzzy Petri-net models of protection system are composed of the operating process of protective devices and the fault diagnosis process. Fault diagnosis model, which makes use of the nature of fuzzy Petri-net, is developed to overcome the drawbacks of methods that depend on operator knowledge. The proposed method can reduce processing time and increase accuracy when compared with the traditional methods. And also this method covers online processing of real-time data from SCADA (Supervisory Control and Data Acquisition)

  • PDF

Neural-Fuzzy Controller Design for the Azimuth and Velocity Control of a Track Vehicle (궤도차량의 속도 및 자세 제어를 위한 뉴럴-퍼지 제어기 설계)

  • 한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.68-75
    • /
    • 1997
  • This paper presents a new approach to the design of neural-fuzzy controller for the speed and azimuth control of a track vehicle. The proposed control scheme uses a Gaussian function as a unit function in the frzzy-neural network, and back propagaton algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a track vehicle driven by two independent wheels.

  • PDF

Optimal Design of Scaling Factor Tuning of Fuzzy Logic Controller Using Genetic Algorithm (유전알고리즘을 이용한 이득요소 동조 퍼지 제어기 최적설계)

  • Hwang, Yong-Won;Oh, Jin-Soo;Park, Kun-Hwa;Hong, Young-Jun;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.897-899
    • /
    • 1999
  • This paper presents a scaling factor tuning method to improve the performance of fuzzy logic controller. Tuning rules and reasoning are utilized off-line to determine the scaling factors based on absolute value of the error and its difference. In this paper We proposed a new method to generate fuzzy logic controllers throught genetic algorithm. The developed approach is subsequently applied to the design of proportional plus integral type fuzzy controller for a dc-servo motor control system. The performance of this control system is demonstrated higher than a conventional fuzzy logic controller(FLC).

  • PDF

Development of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Control Technique (퍼지-뉴럴 제어기법에 의한 이동 로봇의 자율주행 제어시스템 개발)

  • 김종수;한덕기;김영규;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.250-254
    • /
    • 2001
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Design of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Technique (퍼자-뉴럴 제어기법에 의한 이동형 로봇의 자율주행 제어시스템 설계)

  • 김휘동
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.199-203
    • /
    • 2000
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Development of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Control Technique (퍼지-뉴럴 제어기법을 이용한 이동형 로봇의 자율주행 제어시스템 개발)

  • 김휘동;양승윤;전완수;안병국;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.130-134
    • /
    • 2000
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Development of a 3D Simulator and Intelligent Control of Track Vehicle (궤도차량의 지능제어 및 3D 시률레이터 개발)

  • 장영희;신행봉;정동연;서운학;한성현;고희석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.107-111
    • /
    • 1998
  • This paper presents a now approach to the design of intelligent contorl system for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. Moreover, We develop a Windows 95 version dynamic simulator which can simulate a track vehicle model in 3D graphics space. It is proposed a learning controller consisting of two neural network-fuzzy based of independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The dynamic simulator for track vehicle is developed by Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D Graphics. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

Design of Fuzzy-Neural Control Technique Using Automatic Cruise Control System of Mobile Robot

  • Kim, Jong-Soo;Jang, Jun-Hwa;Lee, Jin;Han, Sung-Hyung;Han, Dunk-Ki;Kim, Yong-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.69.3-69
    • /
    • 2001
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF