• Title/Summary/Keyword: fuzzy programming

Search Result 189, Processing Time 0.02 seconds

FUZZY NUMBER LINEAR PROGRAMMING: A PROBABILISTIC APPROACH (3)

  • maleki, H.R.;Mashinchi, M.
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.333-341
    • /
    • 2004
  • In the real world there are many linear programming problems where all decision parameters are fuzzy numbers. Several approaches exist which use different ranking functions for solving these problems. Unfortunately when there exist alternative optimal solutions, usually with different fuzzy value of the objective function for these solutions, these methods can not specify a clear approach for choosing a solution. In this paper we propose a method to remove the above shortcoming in solving fuzzy number linear programming problems using the concept of expectation and variance as ranking functions

A CANONICAL REPRESENTATION FOR THE SOLUTION OF FUZZY LINEAR SYSTEM AND FUZZY LINEAR PROGRAMMING PROBLEM

  • NEHI HASSAN MISHMAST;MALEKI HAMID REZA;MASHINCHI MASHAALAH
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.345-354
    • /
    • 2006
  • In this paper first, we find a canonical symmetrical trapezoidal(triangular) for the solution of the fuzzy linear system $A\tilde{x}=\tilde{b}$, where the elements in A and $\tilde{b}$ are crisp and arbitrary fuzzy numbers, respectively. Then, a model for fuzzy linear programming problem with fuzzy variables (FLPFV), in which, the right hand side of constraints are arbitrary numbers, and coefficients of the objective function and constraint matrix are regarded as crisp numbers, is discussed. A numerical procedure for calculating a canonical symmetrical trapezoidal representation for the solution of fuzzy linear system and the optimal solution of FLPFV, (if there exist) is proposed. Several examples illustrate these ideas.

On a sensitivity of optimal solutions in fuzzy mathematical linear programming problem

  • Munakata, Tsunehiro;Nishiyama, Tadayuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.307-312
    • /
    • 1994
  • The authors have been devoted to researches on fuzzy theories and their applications, especially control theory and application problems, for recent years. In this paper, the authors present results on a comparison of optimal solutions between ones of an ordinary-typed mathematical linear programming problem(O.M.I.P. problem) and ones of a Zimmerman-typed fuzzy mathematical linear programming problem (F.M.L.P. problem), and comment about the sensitivity (differences and fuzziness on between O.M.L.P. problem and F.M.L.P. problem) on optimal solutions of these mathematical linear programming problems.

  • PDF

Optimal Inspection Policy By Fuzzy Goal Programming (Fuzzy Goal Programming을 이용한 최적 검사 정책)

  • 유정상
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.185-191
    • /
    • 1995
  • In this research, a mathematical programming model is developed for the economic modeling of sampling plans based on two evaluation criteria : the outgoing quality and the average total inspection cost A fuzzy goal programming model and its solution procedure are proposed for the managers whose management objectives on the two evaluation criteria are not rigorous. To study the sensitivity of quality characteristic dependence on the resulting inspection plans, a numerical example is solved several times for a dependent model.

  • PDF

Multiple-Use Management Planning of Forest Resources Using Fuzzy Multiobjective Linear Programming (퍼지 다목표(多目標) 선형계획법(線型計劃法)에 의한 산림자원(山林資源)의 다목적(多目的) 경영계획(經營計劃))

  • Woo, Jong-Choon
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.2
    • /
    • pp.172-179
    • /
    • 1996
  • This paper described the application of fuzzy multiobjective linear programming to solving a multiple-use problem of forest resources management. At first the concepts of linear programming, fuzzy linear programming and fuzzy multiobjective linear programming were introduced briefly. In order to illustrate a role of fuzzy multiobjective linear programming in the process of multiple-use forest planning, the natural recreation forest in Mt. Yoomyung was selected for this study. A fuzzy multiobjective linear programming model is formulated with data obtained from this Mt. Yoomyumg natural recreation forest to solve the multiple-use management planning problem of forest resources. Finally, the results, which were obtained from the calculation of this model, were discussed. The maximal value of the membership function(${\lambda}$) was 0.29, when the timber production and the forest recreation function were optimized at the same time through the fuzzy multiobjective linear programming. The cutting area in each period was 102.7ha, while total cutting area was 410.8ha for 4 periods. During 4 periods $57,904m^3$ will be harvested from this natural recreation forest and at the same time total visitors were estimated to be about 8.6 millions persons.

  • PDF

A Fuzzy-Goal Programming Approach For Bilevel Linear Multiple Objective Decision Making Problem

  • Arora, S.R.;Gupta, Ritu
    • Management Science and Financial Engineering
    • /
    • v.13 no.2
    • /
    • pp.1-27
    • /
    • 2007
  • This paper presents a fuzzy-goal programming(FGP) approach for Bi-Level Linear Multiple Objective Decision Making(BLL-MODM) problem in a large hierarchical decision making and planning organization. The proposed approach combines the attractive features of both fuzzy set theory and goal programming(GP) for MODM problem. The GP problem has been developed by fixing the weights and aspiration levels for generating pareto-optimal(satisfactory) solution at each level for BLL-MODM problem. The higher level decision maker(HLDM) provides the preferred values of decision vector under his control and bounds of his objective function to direct the lower level decision maker(LLDM) to search for his solution in the right direction. Illustrative numerical example is provided to demonstrate the proposed approach.

A Fuzzy Allocation Model and Its Application to Attacker Assignment Problem (FUZZY 할당모형 및 공격항공기의 표적 할당 문제에 대한 응용)

  • Yun Seok-Jun;Go Sun-Ju
    • Journal of the military operations research society of Korea
    • /
    • v.18 no.1
    • /
    • pp.47-60
    • /
    • 1992
  • A class of allocation problems can be modeled in a linear programming formulation. But in reality, the coefficient of both the cost and constraint equations can not be generally determined by crisp numbers due to the imprecision or fuzziness in the related parameters. To account for this. a fuzzy version is considered and solved by transforming to a conventional non-linear programming model. This gives a solution as well as the degree that the solution satisfies the objective and constraints simultaneously and hence will be very useful to a decision maker. An attacker assignment problem for multiple fired targets has been modeled by a linear programming formulation by Lemus and David. in which the objective is to minimize the cost that might occur on attacker's losses during the mission. A fuzzy version of the model is formulated and solved by transforming it to a conventional nonlinear programming formulation following the Tanaka's approach. It is also expected that the fuzzy approach will have wide applicability in general allocation problems

  • PDF

FUZZY GOAL PROGRAMMING FOR CRASHING ACTIVITIES IN CONSTRUCTION INDUSTRY

  • Vellanki S.S. Kumar;Mir Iqbal Faheem;Eshwar. K;GCS Reddy
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.642-652
    • /
    • 2007
  • Many contracting firms and project managers in the construction industry have started to utilize multi objective optimization methods to handle multiple conflicting goals for completing the project within the stipulated time and budget with required quality and safety. These optimization methods have increased the pressure on decision makers to search for an optimal resources utilization plan that optimizes simultaneously the total project cost, completion time, and crashing cost by considering indirect cost, contractual penalty cost etc., practically charging them in terms of direct cost of the project which is fuzzy in nature. This paper presents a multiple fuzzy goal programming model (MFGP) that supports decision makers in performing the challenging task. The model incorporates the fuzziness which stems from the imprecise aspiration levels attained by the decision maker to these objectives that are quantified through fuzzy linear membership function. The membership values of these objectives are then maximized which forms the fuzzy decision. The problem is solved using LINGO 8 optimization solver and the best compromise solution is identified. Comparison between solutions of MFGP, fuzzy multi objective linear programming (FMOLP) and multiple goal programming (MGP) are also presented. Additionally, an interactive decision making process is developed to enable the decision maker to interact with the system in modifying the fuzzy data and model parameters until a satisfactory solution is obtained. A case study is considered to demonstrate the feasibility of the proposed model for optimization of project network parameters in the construction industry.

  • PDF

The Generator Maintenance Scheduling using Fuzzy Multi-criteria (퍼지다목적함수를 이용한 발전기보수유지계획의 수립)

  • 최재석;도대호;이태인
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.131-138
    • /
    • 1995
  • A new technique using integer programming based on fuzzy multi-criteria function is proposed for generator maintenance scheduling. Minimization maintenance delay cost and maximization reserve power are considered for fuzzy multi-criteria function. To obtain an optimal solution for generator maintenance scheduling under fuzzy environment, fuzzy multi-criteria integer programming is used. In the maintenance scheduling, a characteristic feature of the presented approach is that the crisp constraints with uncertainty can be taken into account by using fuzzy set theory and so more flexible solution can be obtained. The effectiveness of the proposed approach is demonstrated by the simulation results.

  • PDF

An Enhanced Two-Phase Fuzzy Programming Model for Multi-Objective Supplier Selection Problem

  • Fatrias, Dicky;Shimizu, Yoshiaki
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Supplier selection is an essential task within the purchasing function of supply chain management because it provides companies with opportunities to reduce various costs and realize stable and reliable production. However, many companies find it difficult to determine which suppliers should be targeted as each of them has varying strengths and weaknesses in performance which require careful screening by the purchaser. Moreover, information required to assess suppliers is not known precisely and typically fuzzy in nature. In this paper, therefore, fuzzy multi-objective linear programming (fuzzy MOLP) is presented under fuzzy goals: cost minimization, service level maximization and purchasing risk. To solve the problem, we introduce an enhanced two-phase approach of fuzzy linear programming for the supplier selection. In formulated problem, Analytical Hierarchy Process (AHP) is used to determine the weights of criteria, and Taguchi Loss Function is employed to quantify purchasing risk. Finally, we provide a set of alternative solution which enables decision maker (DM) to select the best compromise solution based on his/her preference. Numerical experiment is provided to demonstrate our approach.