• Title/Summary/Keyword: fuzzy neural network model

Search Result 415, Processing Time 0.03 seconds

Hopfield neuron based nonlinear constrained programming to fuzzy structural engineering optimization

  • Shih, C.J.;Chang, C.C.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.485-502
    • /
    • 1999
  • Using the continuous Hopfield network model as the basis to solve the general crisp and fuzzy constrained optimization problem is presented and examined. The model lies in its transformation to a parallel algorithm which distributes the work of numerical optimization to several simultaneously computing processors. The method is applied to different structural engineering design problems that demonstrate this usefulness, satisfaction or potential. The computing algorithm has been given and discussed for a designer who can program it without difficulty.

A Development of Real Time Artificial Intelligence Warning System Linked Discharge and Water Quality (I) Application of Discharge-Water Quality Forecasting Model (유량과 수질을 연계한 실시간 인공지능 경보시스템 개발 (I) 유량-수질 예측모형의 적용)

  • Yeon, In-Sung;Ahn, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.565-574
    • /
    • 2005
  • It is used water quality data that was measured at Pyeongchanggang real time monitoring stations in Namhan river. These characteristics were analyzed with the water qualify of rainy and nonrainy periods. TOC (Total Organic Carbon) data of rainy periods has correlation with discharge and shows high values of mean, maximum, and standard deviation. DO (Dissolved Oxygen) value of rainy periods is lower than those of nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water qualify forecasting models were applied. LMNN, MDNN, and ANFIS models have achieved the highest overall accuracy of TOC data. LMNN (Levenberg-Marquardt Neural Network) and MDNN (MoDular Neural Network) model which are applied for DO forecasting shows better results than ANFIS (Adaptive Neuro-Fuzzy Inference System). MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. The observation of discharge and water quality are effective at same point as well as same time for real time management. But there are some of real time water quality monitoring stations far from the T/M water stage. Pyeongchanggang station is one of them. So discharge on Pyeongchanggang station was calculated by developed runoff neural network model, and the water quality forecasting model is linked to the runoff forecasting model. That linked model shows the improvement of waterquality forecasting.

Design on a Fuzzy Petri Net for Representation and Verification for Nervous System Behaviors (신경계 행위 표현 및 검증을 위한 FPN 설계)

  • 김성렬;김용승;이상호;이철희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.7
    • /
    • pp.677-687
    • /
    • 1992
  • This paper presents a Fuzzy Pertri Net(FPN)model, which can be used to verify the validity and effectiveness of nervous system bebaviors. The similarities and differences between communication network and neural network are analyzed with respect to the representation and verification of the system behaviors. For the effective representation for the ambiguities of nervous system we combein fuzzy set theory to the PetriNet, and then design a new model, FPN, Also show that FPN is superior to the multiplayer perceptron model using computer simulation.

  • PDF

Efficiency Optimization Control of IPMSM Drive using multi HFC (다중 HFC를 이용한 IPMSM 드라이브의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sun;Kang, Sung-Jun;Baek, Jeong-Woo;Jang, Mi-Geum;Kim, Soon-Young;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.355-358
    • /
    • 2009
  • This paper proposes efficiency optimization control of IPMSM drive using multi hybrid fuzzy controller(HFC). The design of the speed controller based on fuzzy-neural network that is implemented using fuzzy control and neural network. The design of the current based on HFC using model reference and the estimation of the speed based on neural network using ANN controller. In order to maximize the efficiency in such applications, this paper proposes the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using multi HFC. Also, this paper proposes speed control of IPMSM using HFC1, current control of HFC2-HFC3 and estimation of speed using ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled HFC, the operating characteristics controlled by efficiency optimization control are examined in detail.

  • PDF

Design of Type-2 Radial Basis Function Neural Networks Modeling for Sewage Treatment Process (하수처리 공정을 위한 Type-2 RBF Neural Networks 모델링 설계)

  • Lee, Seung-Cheol;Kwun, Hak-Joo;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1469-1478
    • /
    • 2015
  • In this paper, The methodology of Type-2 fuzzy set-based Radial Basis Function Neural Network(T2RBFNN) is proposed for Sewage Treatment Process and the simulator is developed for application to the real-world sewage treatment plant by using the proposed model. The proposed model has robust characteristic than conventional RBFNN. architecture of network consist of three layers such as input layer, hidden layer and output layer of RBFNN, and Type-2 fuzzy set is applied to receptive field in contrast with conventional radial basis function. In addition, the connection weights of the proposed model are defined as linear polynomial function, and then are learned through Back-Propagation(BP). Type reduction is carried out by using Karnik and Mendel(KM) algorithm between hidden layer and output layer. Sewage treatment data obtained from real-world sewage treatment plant is employed to evaluate performance of the proposed model, and their results are analyzed as well as compared with those of conventional RBFNN.

Absolute Vehicle Speed Estimation using Neural Network Model (신경망 모델을 이용한 차량 절대속도 추정)

  • Oh, Kyeung-Heub;Song, Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.51-58
    • /
    • 2002
  • Vehicle dynamics control systems are. complex and non-linear, so they have difficulties in developing a controller for the anti-lock braking systems and the auto-traction systems. Currently the fuzzy-logic technique to estimate the absolute vehicle speed is good results in normal conditions. But the estimation error in severe braking is discontented. In this paper, we estimate the absolute vehicle speed by using the wheel speed data from standard 50-tooth anti-lock braking system wheel speed sensors. Radial symmetric basis function of the neural network model is proposed to implement and estimate the absolute vehicle speed, and principal component analysis on input data is used. Ten algorithms are verified experimentally to estimate the absolute vehicle speed and one of those is perfectly shown to estimate the vehicle speed with a 4% error during a braking maneuver.

Training of Fuzzy-Neural Network for Voice-Controlled Robot Systems by a Particle Swarm Optimization

  • Watanabe, Keigo;Chatterjee, Amitava;Pulasinghe, Koliya;Jin, Sang-Ho;Izumi, Kiyotaka;Kiguchi, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1115-1120
    • /
    • 2003
  • The present paper shows the possible development of particle swarm optimization (PSO) based fuzzy-neural networks (FNN) which can be employed as an important building block in real life robot systems, controlled by voice-based commands. The PSO is employed to train the FNNs which can accurately output the crisp control signals for the robot systems, based on fuzzy linguistic spoken language commands, issued by an user. The FNN is also trained to capture the user spoken directive in the context of the present performance of the robot system. Hidden Markov Model (HMM) based automatic speech recognizers are developed, as part of the entire system, so that the system can identify important user directives from the running utterances. The system is successfully employed in a real life situation for motion control of a redundant manipulator.

  • PDF

Improved Neural Network-based Self-Tuning Fuzzy PID Controller for Sensorless Vector Controlled Induction Motor Drives (센서리스 유도전동기의 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • Kim, Sang-Min;Han, Woo-Yong;Lee, Chang-Goo;Han, Hoo-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1165-1168
    • /
    • 2002
  • This paper presents a neural network based self-tuning fuzzy PID control scheme with variable learning rate for sensorless vector controlled induction motor drives. MRAS(Model Reference Adaptive System) is used for rotor speed estimation. When induction motor is continuously used long time. its electrical and mechanical parameters will change, which degrade the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, introduces a single neuron with a back-propagation learning algorithm to tune the control parameters, and proposes a variable learning rate to improve the control performance. The proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink and the experiment using DS1102 board show the robustness of the proposed controller to parameter variations.

  • PDF

On the Ship's Berthing Control by introducing the Fuzzy Neural Network (선박 접리안의 퍼지학습제어)

  • 구자윤;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.2
    • /
    • pp.69-81
    • /
    • 1994
  • Studies on the ship's automatic navigation & berthing control have been continued by way of solving the ship's mathematical model, but the results of such studies have not reached to our satisfactory level due to its non-linear characteristics at low speed. In this paper, the authors propose a new berthing control system which can evaluate as closely as cap-tain's decision-making by using the FNN(Fuzzy Neural Network) controller which can simulate captain's knowledge. This berthing controller consists of the navigation subsystem FNN controller and the berthing subsystem FNN controller. The learning data are drawn from Ship Handling Simulator (NavSim NMS-90 MK Ⅲ) and represent the ship motion characteristics internally. According to learning procedure, both FNN controllers can tune membership functions and identify fuzzy control rules automatically. The verified results show the FNN controllers effective to incorporate captain's knowledge and experience of berthing.

  • PDF

On the Control of Ship Maneuvering in Channel by Introducing the Fuzzy Neural Network (수로에 있어서 선박조종의 퍼지학습제어)

  • Koo, J. Y.;Lee, C. Y.
    • Journal of Korean Port Research
    • /
    • v.7 no.2
    • /
    • pp.61-68
    • /
    • 1993
  • Studies on the ship's automatic navigation & berthing control have been continued by way of solving the ship's mathematical model, but the results of such studies have not reached to our satisfactory level due to its non-linear characteristics at low speed. In this paper, the authors propose a new control system which can evaluate as closely as captain's decision-making by using the FNN(Fuzzy Neural Network) controller which can simulate captain's knowledge. This controller contains the concept of safety according to channel width. The learning data are drawn from ship Handling simulator(NavSim NMS-90 MK III) and represent the ship motion characteristics internally. According to learning procedure, the FNN controller can tune membership functions and identify fuzzy control rules automatically. The verified results show that the FNN controller is effective to incorporate captain's knowledge and experience of manoeuvrability in channel.

  • PDF