• 제목/요약/키워드: fuzzy neural network model

검색결과 412건 처리시간 0.03초

PREDICTION OF RESIDUAL STRESS FOR DISSIMILAR METALS WELDING AT NUCLEAR POWER PLANTS USING FUZZY NEURAL NETWORK MODELS

  • Na, Man-Gyun;Kim, Jin-Weon;Lim, Dong-Hyuk
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.337-348
    • /
    • 2007
  • A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones.

A Construction of Fuzzy Inference Network based on Neural Logic Network and its Search Strategy

  • Lee, Mal-rey
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2000년도 추계공동학술대회논문집
    • /
    • pp.375-389
    • /
    • 2000
  • Fuzzy logic ignores some information in the reasoning process. Neural networks are powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule- inference. network. And the traditional propagation rule is modified. For the search strategies to find out the belief value of a conclusion in the fuzzy inference network, we conduct a simulation to evaluate the search costs for searching sequentially and searching by means of search priorities.

  • PDF

신경망과 퍼지 알고리즘을 이용한 하천 수질예측 (Water Quality Forecasting of River using Neural Network and Fuzzy Algorithm)

  • 이경훈;강일환;문병석;박진금
    • 환경영향평가
    • /
    • 제14권2호
    • /
    • pp.55-62
    • /
    • 2005
  • This study applied the Neural Network and Fuzzy theory to show water-purity control and preventive measure in water quality forecasting of the future river. This study picked out NAJU and HAMPYUNG as the subject of investigation and used monthly the water quality and the outflow data of KWANGJU2, NAJU, YOUNGSANNPO and HAMPYUNG from 1995 to 1999 to forecast BOD, COD, T-N, T-P water density. The datum from 1995 to 1999 are used for study and that of 2000 are used for verification. To develop model of water quality forecasting, firstly, this research formed Neural Network model and divided Neural Network model into two case - the case of considering lag and not considering. And this study selected optimal Neural Network model through changing the number of hidden layer based on input layer(n) from n to 3n. Through forecasting result, the case without considering lag showed more precise simulated result. Accordingly, this study intended to compare, analyse that Fuzzy model using the method without considering lag with Neural Network model. As a result, this study found that the model without considering lag in Neural Network Network shows the most excellent outcome. Thus this study examined a forecasting accuracy, analyzed result and verified propriety through appling the method of water quality forecasting using Neural Network and Fuzzy Algorithms to the actual case.

ANFIS 기반 분류모형의 설계 및 성능평가 (Design and Evaluation of ANFIS-based Classification Model)

  • 송희석;김재경
    • 지능정보연구
    • /
    • 제15권3호
    • /
    • pp.151-165
    • /
    • 2009
  • 퍼지신경망 모형은 인공신경망의 네트워크 구조 표현방법 및 학습알고리듬과 퍼지시스템의 추론방법을 통합한 모형으로 제어 및 예측분야에 성공적으로 적용되고 있다. 본 연구에서는 퍼지신경망 모형 중 우수한 예측정확도로 인해 최근 각광받고 있는ANFIS (Adaptive Network-based Fuzzy Inference System)모형을 기반으로 하는 분류모형을 설계하고 기존의 분류기법(C5.0 의사결정나무)과 비교하여 분류 정확성 관점에서 평가한다. ANFIS 추론의 경우, 최종 결과값이 계급값이 아닌 연속형 변수값을 취하게 되므로 산출된 결과값을 이용하여 적절한 계급값을 할당하는 과정이 필요하다. 본 연구에서는 의사결정나무기법을 이용하여 계급값을 할당하는 방식과 군집분석을 이용하여 계급값을 할당하는 두 가지 방식을 제안하고 두 가지 데이터 세트에 적용하여 ANFIS를 기반으로 한 분류모형의 정확도를 평가하였다.

  • PDF

신경회로망과 퍼지 논리를 이용한 열간 사상압연 폭 예측 모델 및 제어기 개발 (Width Prediction Model and Control System using Neural Network and Fuzzy in Hot Strip Finishing Mills)

  • 황이철;박철재
    • 제어로봇시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.296-303
    • /
    • 2007
  • This paper proposes a new width control system composed of an ANWC(Automatic Neural network based Width Control) and a fuzzy-PID controller in hot strip finishing mills which aims at obtaining the desirable width. The ANWC is designed using a neural network based width prediction model to minimize a width variation between the measured width and its target value. Input variables for the neural network model are chosen by using the hypothesis testing. The fuzzy-PlD control system is also designed to obtain the fast looper response and the high width control precision in the finishing mill. It is shown through the field test of the Pohang no. 1 hot strip mill of POSCO that the performance of the width margin is considerably improved by the proposed control schemes.

유도전동기 드라이브의 고성능 제어를 위한 적응 FNN 제어기 (Adaptive FNN Controller for High Performance Control of Induction Motor Drive)

  • 이정철;이홍균;정동화
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권9호
    • /
    • pp.569-575
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for high performance of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control Performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation. and steady- state accuracy and transient response.

HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어 (High Performance of Induction Motor Drive with HAl Controller)

  • 남수명;최정식;고재섭;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.570-572
    • /
    • 2005
  • This paper is proposed adaptive hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

유전자 알고리즘을 사용한 퍼지-뉴럴네트워크 구조의 최적모델과 비선형공정시스템으로의 응용 (The Optimal Model of Fuzzy-Neural Network Structure using Genetic Algorithm and Its Application to Nonlinear Process System)

  • 최재호;오성권;안태천;황형수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.302-305
    • /
    • 1996
  • In this paper, an optimal identification method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzz-neural networks(FNNs) and parameters of membership function are tuned using genetic algorithm(GAs). For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activated sludge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The show that the proposed method can produce the intelligence model w th higher accuracy than other works achieved previously.

  • PDF

The Speed Control and Estimation of IPMSM using Adaptive FNN and ANN

  • Lee, Hong-Gyun;Lee, Jung-Chul;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1478-1481
    • /
    • 2005
  • As the model of most practical system cannot be obtained, the practice of typical control method is limited. Accordingly, numerous artificial intelligence control methods have been used widely. Fuzzy control and neural network control have been an important point in the developing process of the field. This paper is proposed adaptive fuzzy-neural network based on the vector controlled interior permanent magnet synchronous motor drive system. The fuzzy-neural network is first utilized for the speed control. A model reference adaptive scheme is then proposed in which the adaptation mechanism is executed using fuzzy-neural network. Also, this paper is proposed estimation of speed of interior permanent magnet synchronous motor using artificial neural network controller. The back-propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back-propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the analysis results to verify the effectiveness of the new method.

  • PDF

Fuzzy추론 시스템과 신경회로망을 결합한 하천유출량 예측 (Runoff Forecasting Model by the Combination of Fuzzy Inference System and Neural Network)

  • 허창환;임기석
    • 한국농공학회논문집
    • /
    • 제49권3호
    • /
    • pp.21-31
    • /
    • 2007
  • This study is aimed at the development of a runoff forecasting model by using the Fuzzy inference system and Neural Network model to solve the uncertainties occurring in the process of rainfall-runoff modeling and improve the modeling accuracy of the stream runoff forecasting. The Neuro-Fuzzy (NF) model were used in this study. The NF model, recently received a great deal of attention, improve the existing Neural Networks by the aid of the Fuzzy theory applied to each node. The study area is the downstreams of Naeseung-chun. Therefore, time-dependent data was obtained from the Wolpo water level gauging station. 11 and 2 out of total 13 flood events were selected for the training and testing set of model respectively. The schematic diagram method and the statistical analysis are conducted to evaluate the feasibility of rainfall-runoff modeling. The model accuracy was rapidly decreased as the forecasting time became longer. The NF model can give accurate runoff forecasts up to 4 hours ahead in standard above the Determination coefficient $(R^2)$ 0.7. In the comparison of the runoff forecasting using the NF and TANK models, characteristics of peak runoff in the TANK model was higher than ones in the NF models, but peak values of hydrograph in the NF models were similar.