• Title/Summary/Keyword: fuzzy membership

Search Result 1,234, Processing Time 0.03 seconds

Classificatin of Normal and Abnormal Heart Sounds Using Neural Network (뉴럴네트워크를 이용한 심음의 정상 비정상 분류)

  • Yoon, Hee-jin
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.131-135
    • /
    • 2018
  • The heart disease taking the second place of the cause of the death of modern people is a terrible disease that makes sudden death without noticing. To judge the aortic valve disease of heart diseases a name of disease was diagnosed using psychological data provided from physioNet. Aortic valve is a valve of the area that blood is spilled from left ventricle to aorta. Aortic stenosis of heart troubles is a disease when the valve does not open appropriately in contracting the left ventricle to aorta due to narrowed aortic valve. In this paper, 3126 samples of cardiac sound data were used as an experiment data composed of 180 characteristics including normal people and aortic valve stenosis patients. To diagnose normal and aortic valve stenosis patients, NEWFM was utilized. By using an average method of weight as an feature selection method of NEWFM, the result shows 91.0871% accuracy.

Design of a AC Magnetic Leakage Flux Scan System use in DSP (DSP를 이용한 교류누설 자속 탐상 시스템의 설계)

  • 임형석;이영훈
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.4
    • /
    • pp.75-80
    • /
    • 2003
  • In this paper, we designed add current scan system basically. Although NDT system using AC method in now days had problem with limit of detection rate and limit of device organization, in this paper, we made up these problem so that designed device smaller than system used, reduction of cost of system organization and precision of measuring crack. Also, AC leakage flux system had high accuracy about minute crack in the surface and advantage of designing system easily so that we designed system for concerning about crack of surface. Furthermore, it can be able to detect exact crack of reference in wide area by using DSP320C31 chip to reduce the time of measuring crack.

  • PDF

Comparison of HRV Time and Frequency Domain Features for Myocardial Ischemia Detection (심근허혈검출을 위한 심박변이도의 시간과 주파수 영역에서의 특징 비교)

  • Tian, Xue-Wei;Zhang, Zhen-Xing;Lee, Sang-Hong;Lim, Joon-S.
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.271-280
    • /
    • 2011
  • Heart Rate Variability (HRV) analysis is a convenient tool to assess Myocardial Ischemia (MI). The analysis methods of HRV can be divided into time domain and frequency domain analysis. This paper uses wavelet transform as frequency domain analysis in contrast to time domain analysis in short term HRV analysis. ST-T and normal episodes are collected from the European ST-T database and the MIT-BIH Normal Sinus Rhythm database, respectively. An episode can be divided into several segments, each of which is formed by 32 successive RR intervals. Eighteen HRV features are extracted from each segment by the time and frequency domain analysis. To diagnose MI, the Neural Network with Weighted Fuzzy Membership functions (NEWFM) is used with the extracted 18 features. The results show that the average accuracy from time and frequency domain features is 75.29% and 80.93%, respectively.

Recognition of Tactilie Image Dependent on Imposed Force Using Fuzzy Fusion Algorithm (접촉력에 따라 변하는 Tactile 영상의 퍼지 융합을 통한 인식기법)

  • 고동환;한헌수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.95-103
    • /
    • 1998
  • This paper deals with a problem occuring in recognition of tactile images due to the effects of imposed force at a me urement moment. Tactile image of a contact surface, used for recognition of the surface type, varies depending on the forces imposed so that a false recognition may result in. This paper fuzzifies two parameters of the contour of a tactile image with the membership function formed by considering the imposed force. Two fuzzifed paramenters are fused by the average Minkowski's dist; lnce. The proposed algorithm was implemented on the multisensor system cnmposed of an optical tact le sensor and a 6 axes forceltorque sensor. By the experiments, the proposed algorithm has shown average recognition ratio greater than 869% over all imposed force ranges and object models which is about 14% enhancement comparing to the case where only the contour information is used. The pro- ~oseda lgorithm can be used for end-effectors manipulating a deformable or fragile objects or for recognition of 3D objects by implementing on multi-fingered robot hand.

  • PDF

Emotion Recognition and Expression System of User using Multi-Modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 사용자의 감정 인식 및 표현 시스템)

  • Yeom, Hong-Gi;Joo, Jong-Tae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • As they have more and more intelligence robots or computers these days, so the interaction between intelligence robot(computer) - human is getting more and more important also the emotion recognition and expression are indispensable for interaction between intelligence robot(computer) - human. In this paper, firstly we extract emotional features at speech signal and facial image. Secondly we apply both BL(Bayesian Learning) and PCA(Principal Component Analysis), lastly we classify five emotions patterns(normal, happy, anger, surprise and sad) also, we experiment with decision fusion and feature fusion to enhance emotion recognition rate. The decision fusion method experiment on emotion recognition that result values of each recognition system apply Fuzzy membership function and the feature fusion method selects superior features through SFS(Sequential Forward Selection) method and superior features are applied to Neural Networks based on MLP(Multi Layer Perceptron) for classifying five emotions patterns. and recognized result apply to 2D facial shape for express emotion.

Moving Object Tracking Using Co-occurrence Features of Objects (이동 물체의 상호 발생 특징정보를 이용한 동영상에서의 이동물체 추적)

  • Kim, Seongdong;Seongah Chin;Moonwon Choo
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.1-13
    • /
    • 2002
  • In this paper, we propose an object tracking system which can be convinced of moving area shaped on objects through color sequential images, decided moving directions of foot messengers or vehicles of image sequences. In static camera, we suggests a new evaluating method extracting co-occurrence matrix with feature vectors of RGB after analyzing and blocking difference images, which is accessed to field of camera view for motion. They are energy, entropy, contrast, maximum probability, inverse difference moment, and correlation of RGB color vectors. we describe how to analyze and compute corresponding relations of objects between adjacent frames. In the clustering, we apply an algorithm of FCM(fuzzy c means) to analyze matching and clustering problems of adjacent frames of the featured vectors, energy and entropy, gotten from previous phase. In the matching phase, we also propose a method to know correspondence relation that can track motion each objects by clustering with similar area, compute object centers and cluster around them in case of same objects based on membership function of motion area of adjacent frames.

  • PDF

Fingerprint Identification Algorithm using Pixel Direction Factor in Blocks (블록별 화소방향성분을 이용한 지문의 동일성 판별 알고리즘)

  • Cho Nam-Hyung;Lee Joo-Shin
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.123-130
    • /
    • 2005
  • In this paper, fingerprint identification algorithm using pixel direction factor in blocks is proposed to minimize false acceptance ratio and to apply security system. The proposed algorithm is that a fingerprint image is divided by 16 blocks, then feature parameters which have direct factors of $0^{\circ},\;45^{\circ},\;90^{\circ}\;and\;135^{\circ}$ is extracted for each block. Membership function of a reference fingerprint and an input fingerprint for the extracted parameters is calculated, then identification of two fingerprint is distinguished using fuzzy inference. False acceptance ratio is evaluated about different fingerprints of In kinds regardless of sex and shape which are obtained from adults, and false rejection ratio is evaluated about fingerprints which are obtained by adding fingerprints of 10 kinds on different fingerprints of 100 kinds. The experiment results is that false acceptance ratio is average $0.34\%$ about experiment of 4,950 times, and false rejection ratio is average $3.7\%$ about experiment of 1,000 times. The proposed algerian is excellent for recognition rate and security.

Aviation Convective Index for Deep Convective Area using the Global Unified Model of the Korean Meteorological Administration, Korea: Part 1. Development and Statistical Evaluation (안전한 항공기 운항을 위한 현업 전지구예보모델 기반 깊은 대류 예측 지수: Part 1. 개발 및 통계적 검증)

  • Yi-June Park;Jung-Hoon Kim
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.519-530
    • /
    • 2023
  • Deep convection can make adverse effects on safe and efficient aviation operations by causing various weather hazards such as convectively-induced turbulence, icing, lightning, and downburst. To prevent such damage, it is necessary to accurately predict spatiotemporal distribution of deep convective area near the airport and airspace. This study developed a new index, the Aviation Convective Index (ACI), for deep convection, using the operational global Unified Model of the Korea Meteorological Administration. The ACI was computed from combination of three different variables: 3-hour maximum of Convective Available Potential Energy, averaged Outgoing Longwave Radiation, and accumulative precipitation using the fuzzy logic algorithm. In this algorithm, the individual membership function was newly developed following the cumulative distribution function for each variable in Korean Peninsula. This index was validated and optimized by using the 1-yr period of radar mosaic data. According to the Receiver Operating Characteristics curve (AUC) and True Skill Score (TSS), the yearly optimized ACI (ACIYrOpt) based on the optimal weighting coefficients for 1-yr period shows a better skill than the no optimized one (ACINoOpt) with the uniform weights. In all forecast time from 6-hour to 48-hour, the AUC and TSS value of ACIYrOpt were higher than those of ACINoOpt, showing the improvement of averaged value of AUC and TSS by 1.67% and 4.20%, respectively.

Fragment Combination From DNA Sequence Data Using Fuzzy Reasoning Method (퍼지 추론기법을 이용한 DNA 염기 서열의 단편결합)

  • Kim, Kwang-Baek;Park, Hyun-Jung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2329-2334
    • /
    • 2006
  • In this paper, we proposed a method complementing failure of combining DNA fragments, defect of conventional contig assembly programs. In the proposed method, very long DNA sequence data are made into a prototype of fragment of about 700 bases that can be analyzed by automatic sequence analyzer at one time, and then matching ratio is calculated by comparing a standard prototype with 3 fragmented clones of about 700 bases generated by the PCR method. In this process, the time for calculation of matching ratio is reduced by Compute Agreement algorithm. Two candidates of combined fragments of every prototype are extracted by the degree of overlapping of calculated fragment pairs, and then degree of combination is decided using a fuzzy reasoning method that utilizes the matching ratios of each extracted fragment, and A, C, G, T membership degrees of each DNA sequence, and previous frequencies of each A, C, G, T. In this paper. DNA sequence combination is completed by the iteration of the process to combine decided optimal test fragments until no fragment remains. For the experiments, fragments or about 700 bases were generated from each sequence of 10,000 bases and 100,000 bases extracted from 'PCC6803', complete protein genome. From the experiments by applying random notations on these fragments, we could see that the proposed method was faster than FAP program, and combination failure, defect of conventional contig assembly programs, did not occur.

Multi-FNN Identification by Means of HCM Clustering and ITs Optimization Using Genetic Algorithms (HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화)

  • 오성권;박호성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.487-496
    • /
    • 2000
  • In this paper, the Multi-FNN(Fuzzy-Neural Networks) model is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNN is based on Yamakawa's FNN and uses simplified inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and Genetic Algorithms(GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNN model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. The aggregate performance index stands for an aggregate objective function with a weighting factor to consider a mutual balance and dependency between approximation and predictive abilities. According to the selection and adjustment of a weighting factor of this aggregate abjective function which depends on the number of data and a certain degree of nonlinearity, we show that it is available and effective to design an optimal Multi-FNN model. To evaluate the performance of the proposed model, we use the time series data for gas furnace and the numerical data of nonlinear function.

  • PDF