• Title/Summary/Keyword: fuzzy logic model

Search Result 698, Processing Time 0.021 seconds

Design of fuzzy logic Run-by-Run controller for rapid thermal precessing system (고속 열처리공정 시스템의 퍼지 Run-by-Run 제어기 설계)

  • Lee, Seok-Joo;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.104-111
    • /
    • 2000
  • A fuzzy logic Run-by-Run(RbR) controller and an in -line wafer characteristics prediction scheme for the rapid thermal processing system have been developed for the study of process repeatability. The fuzzy logic RbR controller provides a framework for controlling a process which is subject to disturbances such as shifts and drifts as a normal part of its operation. The fuzzy logic RbR controller combines the advantages of both fuzzy logic and feedback control. It has two components : fuzzy logic diagnostic system and model modification system. At first, a neural network model is constructed with the I/O data collected during the designed experiments. The wafer state after each run is assessed by the fuzzy logic diagnostic system with featuring step. The model modification system updates the existing neural network process model in case of process shift or drift, and then select a new recipe based on the updated model using genetic algorithm. After this procedure, wafer characteristics are predicted from the in-line wafer characteristics prediction model with principal component analysis. The fuzzy logic RbR controller has been applied to the control of Titanium SALICIDE process. After completing all of the above, it follows that: 1) the fuzzy logic RbR controller can compensate the process draft, and 2) the in-line wafer characteristics prediction scheme can reduce the measurement cost and time.

  • PDF

Hybrid fuzzy model to predict strength and optimum compositions of natural Alumina-Silica-based geopolymers

  • Nadiri, Ata Allah;Asadi, Somayeh;Babaizadeh, Hamed;Naderi, Keivan
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.103-110
    • /
    • 2018
  • This study introduces the supervised committee fuzzy model as a hybrid fuzzy model to predict compressive strength (CS) of geopolymers prepared from alumina-silica products. For this purpose, more than 50 experimental data that evaluated the effect of $Al_2O_3/SiO_2$, $Na_2O/Al_2O_3$, $Na_2O/H_2O$ and Na/[Na+K] on (CS) of geopolymers were collected from the literature. Then, three different Fuzzy Logic (FL) models (Sugeno fuzzy logic (SFL), Mamdani fuzzy logic (MFL), and Larsen fuzzy logic (LFL)) were adopted to overcome the inherent uncertainty of geochemical parameters and to predict CS. After validating the model, it was found that the SFL model is superior to MFL and LFL models, but each of the FL models has advantages to predict CS. Therefore, to achieve the optimal performance, the supervised committee fuzzy logic (SCFL) model was developed as a hybrid method to combine the benefits of individual FL models. The SCFL employs an artificial neural network (ANN) model to re-predict the CS of three FL model predictions. The results also show significant fitting improvement in comparison with individual FL models.

Vehicle Trajectory Control using Fuzzy Logic Controller (퍼지논리제어기를 이용한 차량의 궤적제어)

  • 이승종;조현욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.91-99
    • /
    • 2003
  • When the driver suddenly depresses the brake pedal under critical conditions, the desired trajectory of the vehicle can be changed. In this study, the vehicle dynamics and fuzzy logic controller are used to control the vehicle trajectory. The dynamic vehicle model consists of the engine, the rotational wheel, chassis, tires and brakes. The engine model is derived from the engine experimental data. The engine torque makes the wheel rotate and generates the angular velocity and acceleration of the wheel. The dynamic equation of the vehicle model is derived from the top-view vehicle model using Newton's second law. The Pacejka tire model formulated from the experimental data is used. The fuzzy logic controller is developed to compensate for the trajectory error of the vehicle. This fuzzy logic controller individually acts on the front right, front left, rear right and rear left brakes and regulates each brake torque. The fuzzy logic controlling each brake works to compensate for the trajectory error on the split - $\mu$ road conditions follows the desired trajectory.

Modeling and Control of Intersection Network using Real-Time Fuzzy Temporal Logic Framework (실시간 퍼지 시간논리구조를 이용한 교차로 네트워크의 모델링과 제어)

  • Kim, Jung-Chul;Lee, Won-Hyok;Kim, Jin-Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.352-357
    • /
    • 2007
  • This paper deals with modeling method and application of Fuzzy Discrete Event System(FDES). FDES have characteristics which Crisp Discrete Event System(CDES) can't deals with and is constituted with the events that is determined by vague and uncertain judgement like biomedical or traffic control. We proposed Real-time Fuzzy Temporal Logic Framework(RFTLF) to model Fuzzy Discrete Event System. It combines Temporal Logic Framework with Fuzzy Theory. We represented the model of traffic signal systems for intersection to have the property of Fuzzy Discrete Event System with Real-time Fuzzy Temporal Logic Framework and designed a traffic signal controller for smooth traffic flow. Moreover, we proposed the method to find the minimum-time route to reach the desired destination with information obtained in each intersection. In order to evaluate the performance of Real-time Fuzzy Temporal Logic Framework model proposed in this paper, we simulated unit-time extension traffic signal controller model of the latest signal control method on the same condition.

Logic-based Fuzzy Neural Networks based on Fuzzy Granulation

  • Kwak, Keun-Chang;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1510-1515
    • /
    • 2005
  • This paper is concerned with a Logic-based Fuzzy Neural Networks (LFNN) with the aid of fuzzy granulation. As the underlying design tool guiding the development of the proposed LFNN, we concentrate on the context-based fuzzy clustering which builds information granules in the form of linguistic contexts as well as OR fuzzy neuron which is logic-driven processing unit realizing the composition operations of T-norm and S-norm. The design process comprises several main phases such as (a) defining context fuzzy sets in the output space, (b) completing context-based fuzzy clustering in each context, (c) aggregating OR fuzzy neuron into linguistic models, and (c) optimizing connections linking information granules and fuzzy neurons in the input and output spaces. The experimental examples are tested through two-dimensional nonlinear function. The obtained results reveal that the proposed model yields better performance in comparison with conventional linguistic model and other approaches.

  • PDF

A Study on Idle Speed Control Using Fuzzy Logic (퍼지 논리를 이용한 공회전 속도 제어에 관한 연구)

  • Ko, D.W.;Lee, Y.N.;Lee, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.23-29
    • /
    • 1994
  • The design procedure for fuzzy logic controller depends on the expert's knowledge or trial and error. Moreover, it is very difficult to guarantee the stability and robustness of the system due to the linguistic expression of fuzzy control. However, fuzzy logic control has succeeded in many control problems that the conventional control theory has difficulties to deal with. As a result, this control theory is applied to the engine control system which a mathematical model is difficult. In this study, the fuzzy logic is applied to obtain the gain of PI control at idle speed control system, and a simple engine model is developed in order to perform simulation. Experimental results show that the response to reach the target engine speed at idle speed control system is improved by adopting the gain obtained with fuzzy logic.

  • PDF

Design of Fuzzy Logic Control System for Segway Type Mobile Robots

  • Kwak, Sangfeel;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.126-131
    • /
    • 2015
  • Studies on the control of inverted pendulum type systems have been widely reported. This is because this type of system is a typical complex nonlinear system and may be a good model to verify the performance of a proposed control system. In this paper, we propose the design of two fuzzy logic control systems for the control of a Segway mobile robot which is an inverted pendulum type system. We first introduce a dynamic model of the Segway mobile robot and then analyze the system. We then propose the design of the fuzzy logic control system, which shows good performance for the control of any nonlinear system. In this paper, we here design two fuzzy logic control systems for the position and balance control of the Segway mobile robot. We demonstrate their usefulness through simulation examples. We also note the possibility of simplifying the design process and reducing the computational complexity. This possibility is the result of the skew symmetric property of the fuzzy rule tables of the system.

Thermal Error Modeling of a Horizontal Machining Center Using the Fuzzy Logic Strategy (퍼지논리를 이용한 수평 머시닝 센터의 열변형 오차 모델링)

  • Lee, Jae-Ha;Lee, Jin-Hyeon;Yang, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2589-2596
    • /
    • 2000
  • As current manufacturing processes require high spindle speed and precise machining, increasing accuracy by reducing volumetric errors of the machine itself, particularly thermal errors, is very important. Thermal errors can be estimated by many empirical models, for example, an FEM model, a neural network model, a linear regression model, an engineering judgment model, etc. This paper discusses to make a modeling of thermal errors efficiently through backward elimination and fuzzy logic strategy. The model of a thermal error using fuzzy logic strategy overcomes limitation of accuracy in the linear regression model or the engineering judgment model. It shows that the fuzzy model has more better performance than linear regression model, though it has less number of thermal variables than the other. The fuzzy model does not need to have complex procedure such like multi-regression and to know the characteristics of the plant, and the parameters of the model can be mathematically calculated. Also, the fuzzy model can be applied to any machine, but it delivers greater accuracy and robustness.

A Study on the Development of Automotive Climate Controller Using Fuzzy Logic (퍼지 논리를 이용한 자동차 기후제어기 개발에 관한 연구)

  • 이운근;이준웅;백광렬
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.196-206
    • /
    • 2000
  • These days, the fuzzy logic or the fuzzy set theory has received attention from a number of researchers in the area of industrial application. Moreover, the fuzzy logic control has been successfully applied to a large numbers of control problems where the conventional control methods had failed. Using this control theory we designed a climate controller for an automotive climate control system whose mathematical model is difficult. This paper describes an automotive climate control where the fuzzy control has been used to stabilize parameter uncertainties and disturbance effects. To show the validity and effectiveness of the proposed control method, the fuzzy logic controller was implemented with a philips 80C552 microcomputer chip and tested in an actual vehicle. From the experimental results, it could be conduced that the proposed controller is superior to conventional controllers in both control performance and thermal comfort. The climate control system in cars is difficult to model mathematically so we tested a fuzzy logic control system which promised better results.

  • PDF

APPLICATION OF FUZZY LOGIC IN THE CLASSICAL CELLULAR AUTOMATA MODEL

  • Chang, Chun-Ling;Zhang, Yun-Jie;Dong, Yun-Ying
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.433-443
    • /
    • 2006
  • In [1], they build two populations' cellular automata model with predation based on the Penna model. In this paper, uncertain aspects and problems of imprecise and vague data are considered in this model. A fuzzy cellular automata model containing movable wolves and sheep has been built. The results show that the fuzzy cellular automata can simulate the classical CA model and can deal with imprecise and vague data.