• Title/Summary/Keyword: fuzzy least absolute deviation method

Search Result 3, Processing Time 0.016 seconds

LEAST ABSOLUTE DEVIATION ESTIMATOR IN FUZZY REGRESSION

  • KIM KYUNG JOONG;KIM DONG HO;CHOI SEUNG HOE
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.649-656
    • /
    • 2005
  • In this paper we consider a fuzzy least absolute deviation method in order to construct fuzzy linear regression model with fuzzy input and fuzzy output. We also consider two numerical examples to evaluate an effectiveness of the fuzzy least absolute deviation method and the fuzzy least squares method.

Trend in Fuzzy Regression Model

  • 최승회;김해경;정은경
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.73-77
    • /
    • 2004
  • 종속변수와 독립변수 사이의 통계적인 관계를 설명하기 위해 사용되는 회귀모형을 분석하는 방법을 회귀분석이라 한다. 독립변수와 종속변수가 퍼지수인 퍼지회귀모형을 추정하기 위해 최소전대편차추정량을 제시하고. 예제를 이용하여 퍼지최소절대편차회귀모형과 퍼지최소자 승회귀모형의 효율성을 평가한다.

  • PDF

FUZZY REGRESSION MODEL WITH MONOTONIC RESPONSE FUNCTION

  • Choi, Seung Hoe;Jung, Hye-Young;Lee, Woo-Joo;Yoon, Jin Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.973-983
    • /
    • 2018
  • Fuzzy linear regression model has been widely studied with many successful applications but there have been only a few studies on the fuzzy regression model with monotonic response function as a generalization of the linear response function. In this paper, we propose the fuzzy regression model with the monotonic response function and the algorithm to construct the proposed model by using ${\alpha}-level$ set of fuzzy number and the resolution identity theorem. To estimate parameters of the proposed model, the least squares (LS) method and the least absolute deviation (LAD) method have been used in this paper. In addition, to evaluate the performance of the proposed model, two performance measures of goodness of fit are introduced. The numerical examples indicate that the fuzzy regression model with the monotonic response function is preferable to the fuzzy linear regression model when the fuzzy data represent the non-linear pattern.