• 제목/요약/키워드: fuzzy inference system

검색결과 942건 처리시간 0.034초

Hybrid Fuzzy Association Structure for Robust Pet Dog Disease Information System

  • Kim, Kwang Baek;Song, Doo Heon;Jun Park, Hyun
    • Journal of information and communication convergence engineering
    • /
    • 제19권4호
    • /
    • pp.234-240
    • /
    • 2021
  • As the number of pet dog-related businesses is rising rapidly, there is an increasing need for reliable pet dog health information systems for casual pet owners, especially those caring for older dogs. Our goal is to implement a mobile pre-diagnosis system that can provide a first-hand pre-diagnosis and an appropriate coping strategy when the pet owner observes abnormal symptoms. Our previous attempt, which is based on the fuzzy C-means family in inference, performs well when only relevant symptoms are provided for the query, but this assumption is not realistic. Thus, in this paper, we propose a hybrid inference structure that combines fuzzy association memory and a double-layered fuzzy C-means algorithm to infer the probable disease with robustness, even when noisy symptoms are present in the query provided by the user. In the experiment, it is verified that our proposed system is more robust when noisy (irrelevant) input symptoms are provided and the inferred results (probable diseases) are more cohesive than those generated by the single-phase fuzzy C-means inference engine.

선형 설계용 에이전트 기반 퍼지 추론 시스템 기초연구 (An Agent-based Fuzzy Inference System for Hull Form Design)

  • 이규열;김수영;신성철;조윤제;김민정
    • 한국지능시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.41-49
    • /
    • 1998
  • 에에전트는 독립적인 모듈로서 설계에 필요한 정보를 특성별로 분리하여 합의된 규약, 즉 에이전트 통신 언어에 따라 정보를 교환하는 것이며, 퍼지 추론 시스템은 경험 지식을 언어적 제어 규칙으로 표현하고 퍼지 추론을 이용해서 컴퓨터에 실행할 수 있도록 한 것이다. 본 연구에서는 퍼지 추론 시스템과 에이전트 기반 시스템의 결합을 시도하고, 이를 주요치수와 선형 계수의 추론에 적용하여 선박설계에서의 응용가능성을 검토하였다.

  • PDF

Multi-Sensor Data Fusion Model that Uses a B-Spline Fuzzy Inference System

  • Lee, K.S.;S.W. Shin;D.S. Ahn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.23.3-23
    • /
    • 2001
  • The main object of this work is the development of an intelligent multi-sensor integration and fusion model that uses fuzzy inference system. Sensor data from different types of sensors are integrated and fused together based on the confidence which is not typically used in traditional data fusion methods. The information is fed as input to a fuzzy inference system(FIS). The output of the FIS is weights that are assigned to the different sensor data reflecting the confidence En the sensor´s behavior and performance. We interpret a type of fuzzy inference system as an interpolator of B-spline hypersurfaces. B-spline basis functions of different orders are regarded as a class of membership functions. This paper presents a model that ...

  • PDF

관능평가를 위한 효율적인 퍼지추론 규칙의 설계 (Designing efficient fuzzy inference rules for the sensory evaluation)

  • 이진춘
    • 한국산업정보학회논문지
    • /
    • 제6권1호
    • /
    • pp.61-69
    • /
    • 2001
  • 본 연구는 관능검사에서 얻은 결과로 평가규칙을 설계하고 이를 이용하여 추후의 관능평가에 응용할 수 있는 방법을 제안함에 있어서, 퍼지추론의 규칙을 효율적으로 설계하는 것에 관련된 것이다. 퍼지추론 규칙의 수는 규칙의 전건부의 구조와 파라미터를 설계함에 있어서 퍼지분할의 수에 따라 결정되는데, 분할의 수가 많다고 해서 최적은 아니므로 효율적으로 규칙의 수를 축소하는 것이 규칙을 응용할 때의 효율성을 제고하는 동시에 실무에 응용할 때 추론엔진의 속도를 높일 수 있다. 이를 위해 본 연구에서는 선행연구에서 제시된 사례를 이용하여 추론규칙의 수를 축소하여도 대등한 결과를 얻을 수 있음을 수치예를 통하여 증명하였다. 본 연구의 결과는 향후 관능검사를 이용하는 다른 분야에도 유효하게 응용될 수 있을 것이다.

  • PDF

Spring Flow Prediction affected by Hydro-power Station Discharge using the Dynamic Neuro-Fuzzy Local Modeling System

  • Hong, Timothy Yoon-Seok;White, Paul Albert.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.58-66
    • /
    • 2007
  • This paper introduces the new generic dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi-Sugeno (TS) type fuzzy inference system for complex dynamic hydrological modeling tasks. The proposed DNFLMS applies a local generalization principle and an one-pass training procedure by using the evolving clustering method to create and update fuzzy local models dynamically and the extended Kalman filtering learning algorithm to optimize the parameters of the consequence part of fuzzy local models. The proposed DNFLMS is applied to develop the inference model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatts Cobb hydropower station on springs flow. It is demonstrated that the proposed DNFLMS is superior in terms of model accuracy, model complexity, and computational efficiency when compared with a multi-layer perceptron trained with the back propagation learning algorithm and well-known adaptive neural-fuzzy inference system, both of which adopt global generalization.

  • PDF

A hierarchical fuzzy controller using structured Takagi-Sugeno type fuzzy inference engine

  • Moon G. Joo;Lee, Jin S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.179-184
    • /
    • 1998
  • In this paper, a new hierarchical fuzzy inference system (HFIS) using structured Takagi-Sugeno type fuzzy inference units(FIUs) is proposed. The proposed HFIS not only solves the rule explosion problem in conventional HFIS, but also overcomes the readability problem caused by the structure where outputs of previous level FIUs are used as input variables directly. Gradient descent algorithm is used for adaptation of fuzzy rules. The ball and beam control is performed in computer simulation to illustrate the performance of the proposed controller.

  • PDF

Self-Evolving Expert Systems based on Fuzzy Neural Network and RDB Inference Engine

  • Kim, Jin-Sung
    • 지능정보연구
    • /
    • 제9권2호
    • /
    • pp.19-38
    • /
    • 2003
  • In this research, we propose the mechanism to develop self-evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most researchers had tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, this approach had some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, knowledge engineers had tried to develop an automatic knowledge extraction mechanism. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference engine. Our proposed mechanism has five advantages. First, it can extract and reduce the specific domain knowledge from incomplete database by using data mining technology. Second, our proposed mechanism can manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it can construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems) module. Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy relationships. Fifth, RDB-driven forward and backward inference time is shorter than the traditional text-oriented inference time.

  • PDF

펴지추론과 다항식에 기초한 활성노드를 가진 자기구성네트윅크 (Self-organizing Networks with Activation Nodes Based on Fuzzy Inference and Polynomial Function)

  • 김동원;오성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.15-15
    • /
    • 2000
  • In the past couple of years, there has been increasing interest in the fusion of neural networks and fuzzy logic. Most of the existing fused models have been proposed to implement different types of fuzzy reasoning mechanisms and inevitably they suffer from the dimensionality problem when dealing with complex real-world problem. To overcome the problem, we propose the self-organizing networks with activation nodes based on fuzzy inference and polynomial function. The proposed model consists of two parts, one is fuzzy nodes which each node is operated as a small fuzzy system with fuzzy implication rules, and its fuzzy system operates with Gaussian or triangular MF in Premise part and constant or regression polynomials in consequence part. the other is polynomial nodes which several types of high-order polynomials such as linear, quadratic, and cubic form are used and are connected as various kinds of multi-variable inputs. To demonstrate the effectiveness of the proposed method, time series data for gas furnace process has been applied.

  • PDF

적외선 열화상 카메라를 이용한 퍼지추론 기반 열화진단 시스템 개발 (Development of Fuzzy Inference-based Deterioration Diagnosis System Using Infrared Thermal Imaging Camera)

  • 최우용;김종범;오성권;김영일
    • 전기학회논문지
    • /
    • 제64권6호
    • /
    • pp.912-921
    • /
    • 2015
  • In this paper, we introduce fuzzy inference-based real-time deterioration diagnosis system with the aid of infrared thermal imaging camera. In the proposed system, the infrared thermal imaging camera monitors diagnostic field in real time and then checks state of deterioration at the same time. Temperature and variation of temperature obtained from the infrared thermal imaging camera variation are used as input variables. In addition to perform more efficient diagnosis, fuzzy inference algorithm is applied to the proposed system, and fuzzy rule is defined by If-then form and is expressed as lookup-table. While triangular membership function is used to estimate fuzzy set of input variables, that of output variable has singleton membership function. At last, state of deterioration in the present is determined based on output obtained through defuzzification. Experimental data acquired from deterioration generator and electric machinery are used in order to evaluate performance of the proposed system. And simulator is realized in order to confirm real-time state of diagnostic field

졸음운전 방지를 위한 fuzzy 추론에 의한 각성도의 평가 (Evaluation of Arousal Level to Prevent Drowsy Driving by Fuzzy Inference)

  • 김연호;고한우;유준
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권4호
    • /
    • pp.491-498
    • /
    • 1997
  • 본 연구에서는 졸음운전 방지를 위한 방법으로 기존의 3단계 경고음법과 fuzzy logic을 이용한 가성도 측정 및 제어법을 시뮬레이션으로 비교 및 분석하였다. 각성상태를 제어하는 방법으로 사용되었던 기존의 각성제어지표는 실 차에는 사용될 경우 효과적이지 못하므로 각성상태에 따른 영역별 Nz와 IRI의 상관분포도를 분석하여 기존의 각성제어지표를 수정하였다. Fuzzy 추론으로는 Sugeno의 방법을 사용하였고 멤버쉽함수와 제어규칙 베이스는 수정된 각성제어지표로부터 결정하였다. 시뮬레이션 결과 60이하의 IRI가 발생되는 경우, Nz의 변화에 따라 두 제어방법 모두 small, medium, big의 경고음이 발생되었으나 3단계 경고음법은 다음 단계의 발생영역이 될 때까지 같은 출력만을 발생한다. 그러나 퍼지추론의 출력은 피검자의 각성수준의 변화에 잘 추종하여 변화되었으므로 3단계 경고음법의 문제점을 해겨할 수 있었고 더욱이 퍼지 추론의 출력과 Nz와의 상관계수(r=0.99)가 매우 높았으므로, 실제 운전시 퍼지추론 방법을 이용한 각성도 평가 및 제어에 적용할 경우 3단계 경고음법 보다 효과적일 것으로 기대된다.

  • PDF