• Title/Summary/Keyword: fuzzy inference

Search Result 1,297, Processing Time 0.025 seconds

Consideration of a Robust Search Methodology that could be used in Full-Text Information Retrieval Systems (퍼지 논리를 이용한 사용자 중심적인 Full-Text 검색방법에 관한 연구)

  • Lee, Won-Bu
    • Asia pacific journal of information systems
    • /
    • v.1 no.1
    • /
    • pp.87-101
    • /
    • 1991
  • The primary purpose of this study was to investigate a robust search methodology that could be used in full-text information retrieval systems. A robust search methodology is one that can be easily used by a variety of users (particularly naive users) and it will give them comparable search performance regardless of their different expertise or interests In order to develop a possibly robust search methodology, a fully functional prototype of a fuzzy knowledge based information retrieval system was developed. Also, an experiment that used this prototype information retreival system was designed to investigate the performance of that search methodology over a small exploratory sample of user queries To probe the relatonships between the possibly robust search performance and the query organization using fuzzy inference logic, the search performance of a shallow query structure was analyzes. Consequently the following several noteworthy findings were obtained: 1) the hierachical(tree type) query structure might be a better query organization than the linear type query structure 2) comparing with the complex tree query structure, the simple tree query structure that has at most three levels of query might provide better search performance 3) the fuzzy search methodology that employs a proper levels of cut-off value might provide more efficient search performance than the boolean search methodology. Even though findings could not be statistically verified because the experiments were done using a single replication, it is worth noting however, that the research findings provided valuable information for developing a possibly robust search methodology in full-text information retrieval.

  • PDF

License Plate Extraction Using Gray Labeling and fuzzy Membership Function (그레이 레이블링 및 퍼지 추론 규칙을 이용한 흰색 자동차 번호판 추출 기법)

  • Kim, Do-Hyeon;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1495-1504
    • /
    • 2008
  • New license plates have been used since 2007. This paper proposes a new license plate extraction method using a gray labeling and a fuzzy reasoning method. First, the proposed method extracts the candidate plates by the gray labeling which is the enhanced version of a non-recursive flood-filling algorithm. By newly designed fuzzy inference system. fitness of each candidate plates are calculated. Finally, the area of the license plate in a image is extracted as a region of the candidate label which has the highest fitness. In the experiments, various license plate images took from indoor/outdoor parking lot, street, etc. by digital camera or cellular phone were used and the proposed extraction method was showed remarkable results of a 94 percent success.

Development of Fuzzy Logic-Based Diagnosis Algorithm for Fault Detection Of Dual-Type Temperature Sensor for Gas Turbine System (가스터빈용 듀얼타입 온도센서의 고장검출을 위한 퍼지로직 기반의 진단 알고리즘 개발)

  • Young-Bok Han;Sung-Ho Kim;Byon-Gon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Due to the recent increase in new and renewable energy, gas turbine generators start and stop every day to supply high-quality power, and accordingly, the life span of high-temperature parts is shortened and the failure of combustion chamber temperature sensors increases. Therefore, in this study, we proposed a fuzzy logic-based failure diagnosis algorithm that can accurately diagnose and systematically detect the failure of the sensor when the dual temperature sensor used for gas turbine control fails, and to confirm the usefulness of the proposed algorithm We tried to confirm the usefulness of the proposed algorithm by performing various simulations under the matlab/simulink environment.

Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.61-74
    • /
    • 2017
  • One of the most reliable and simplest tools for structural vibration control in civil engineering is Tuned Mass Damper, TMD. Provided that the frequency and damping parameters of these dampers are tuned appropriately, they can reduce the vibrations of the structure through their generated inertia forces, as they vibrate continuously. To achieve the optimal parameters of TMD, many different methods have been provided so far. In old approaches, some formulas have been offered based on simplifying models and their applied loadings while novel procedures need to model structures completely in order to obtain TMD parameters. In this paper, with regard to the nonlinear decision-making of fuzzy systems and their enough ability to cope with different unreliability, a method is proposed. Furthermore, by taking advantage of both old and new methods a fuzzy system is designed to be operational and reduce uncertainties related to models and applied loads. To design fuzzy system, it is required to gain data on structures and optimum parameters of TMDs corresponding to these structures. This information is obtained through modeling MDOF systems with various numbers of stories subjected to far and near field earthquakes. The design of the fuzzy systems is performed by three methods: look-up table, the data space grid-partitioning, and clustering. After that, rule weights of Mamdani fuzzy system using the look-up table are optimized through genetic algorithm and rule weights of Sugeno fuzzy system designed based on grid-partitioning methods and clustering data are optimized through ANFIS (Adaptive Neuro-Fuzzy Inference System). By comparing these methods, it is observed that the fuzzy system technique based on data clustering has an efficient function to predict the optimal parameters of TMDs. In this method, average of errors in estimating frequency and damping ratio is close to zero. Also, standard deviation of frequency errors and damping ratio errors decrease by 78% and 4.1% respectively in comparison with the look-up table method. While, this reductions compared to the grid partitioning method are 2.2% and 1.8% respectively. In this research, TMD parameters are estimated for a 15-degree of freedom structure based on designed fuzzy system and are compared to parameters obtained from the genetic algorithm and empirical relations. The progress up to 1.9% and 2% under far-field earthquakes and 0.4% and 2.2% under near-field earthquakes is obtained in decreasing respectively roof maximum displacement and its RMS ratio through fuzzy system method compared to those obtained by empirical relations.

A Study on Tracking Control of Omni-Directional Mobile Robot Using Fuzzy Multi-Layered Controller (퍼지 다층 제어기를 이용한 전방향 이동로봇의 추적제어에 관한 연구)

  • Kim, Sang-Dae;Kim, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1786-1795
    • /
    • 2011
  • The trajectory control for omni-directional mobile robot is not easy. Especially, the tracking control which system uncertainty problem is included is much more difficult. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy multi-layered algorithm. The fuzzy control method is able to solve the problems of classical adaptive controller and conventional fuzzy adaptive controllers. It explains the architecture of a fuzzy adaptive controller using the robust property of a fuzzy controller. The basic idea of new adaptive control scheme is that an adaptive controller can be constructed with parallel combination of robust controllers. This new adaptive controller uses a fuzzy multi-layered architecture which has several independent fuzzy controllers in parallel, each with different robust stability area. Out of several independent fuzzy controllers, the most suited one is selected by a system identifier which observes variations in the controlled system parameter. This paper proposes a design procedure which can be carried out mathematically and systematically from the model of a controlled system; related mathematical theorems and their proofs are also given. Finally, the good performance of the developed mobile robot is confirmed through live tests of path control task.

A Study of Service Decision Method in Context Awareness System (상황인식 시스템에서의 서비스 결정 방법에 관한 연구)

  • Heo, Kyeong-Wook;Ha, Kyeong-Jae
    • Journal of Digital Convergence
    • /
    • v.10 no.6
    • /
    • pp.253-258
    • /
    • 2012
  • In this thesis, I categorize expression of context data required for context data inference according to five Ws and one H(5W1H) in Ubiquitous computing environment and infer superordinate context by combining context data of 4W1H with inferred context of why. This thesis suggests that we categorize specific context and service according to 6W2H added Whom(specific data or service) and How much (accuracy), and determine proper services for specific contexts by introducing the concept of rough set for expression and inference of categorized contexts and inaccurate knowledge. Since there is an limitation of the set of 0 and 1 when concerned with accuracy of services, I introduce the concept of fuzzy set. To provide users with the most appropriate service by ridding of unnecessary properties through the process of reduction, I also use the concept of rough set.

A Study on the Construction method to improve the fuzzy controllers using language variable and coefficient selecting method (언어변수 및 계수선택방법을 이용한 퍼지제어기 설계에 관한 연구)

  • 박승용;변기녕;황종학;김흥수
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.05a
    • /
    • pp.125-134
    • /
    • 2000
  • In this paper, we proposed a new circuit construction method that reduced the number of CMOS devices of singleton fuzzy controller(SFC) through the proposing a new membership function circuit(MFC) which uses the language variable selecting and the coefficient selecting circuit. According to the range of input values, we can choose the language variables beforehand which will be used in the inference. So we proposed the new MFC which generates the only necessary language variables. Also, we removed all rules of which adapting degree of their antecedents is zero through proposing the coefficient selecting circuit which beforehand selects the coefficients which will influence the inference result. Though this method, we simplified the structure of SFC and reduced the size of hardware. And to solve the problem in the current mode with respect to the restriction of the fan-out number, voltage-input and current-out membership function circuits are constituted of operational transconductance amplifiers. A membership function circuit which includes the language variable selecting circuit, a minimum operation circuit we implemented by current mode CMOS devices. As a result of applying proposed method, total numbers of blocks and devices wave decreased. If the number of variables and antecedents are getting larger, this method is more efficient.

  • PDF

A Development of Real-time Flood Forecasting System for U-City (Ubiquitous 환경의 U-City 홍수예측시스템 개발)

  • Kim, Hyung-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.181-184
    • /
    • 2007
  • Up to now, a lot of houses, roads and other urban facilities have been damaged by natural disasters such as flash floods and landslides. It is reported that the size and frequency of disasters are growing greatly due to global warming. In order to mitigate such disaster, flood forecasting and alerting systems have been developed for the Han river, Geum river, Nak-dong river and Young-san river. These systems, however, do not help small municipal departments cope with the threat of flood. In this study, a real-time urban flood forecasting service (U-FFS) is developed for ubiquitous computing city which includes small river basins. A test bed is deployed at Tan-cheon in Gyeonggido to verify U-FFS. Wireless sensors such as rainfall gauge and water lever gauge are installed to develop hydrologic forecasting model and CCTV camera systems are also incorporated to capture high definition images of river basins. U-FFS is based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) that is data-driven model and is characterized by its accuracy and adaptability. It is found that U-FFS can forecast the water level of outlet of river basin and provide real-time data through internet during heavy rain. It is revealed that U-FFS can predict the water level of 30 minutes and 1 hour later very accurately. Unlike other hydrologic forecasting model, this newly developed U-FFS has advantages such as its applicability and feasibility. Furthermore, it is expected that U-FFS presented in this study can be applied to ubiquitous computing city (U-City) and/or other cities which have suffered from flood damage for a long time.

  • PDF

Multi-Agent Reinforcement Learning Model based on Fuzzy Inference (퍼지 추론 기반의 멀티에이전트 강화학습 모델)

  • Lee, Bong-Keun;Chung, Jae-Du;Ryu, Keun-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.51-58
    • /
    • 2009
  • Reinforcement learning is a sub area of machine learning concerned with how an agent ought to take actions in an environment so as to maximize some notion of long-term reward. In the case of multi-agent, especially, which state space and action space gets very enormous in compared to single agent, so it needs to take most effective measure available select the action strategy for effective reinforcement learning. This paper proposes a multi-agent reinforcement learning model based on fuzzy inference system in order to improve learning collect speed and select an effective action in multi-agent. This paper verifies an effective action select strategy through evaluation tests based on Robocup Keepaway which is one of useful test-beds for multi-agent. Our proposed model can apply to evaluate efficiency of the various intelligent multi-agents and also can apply to strategy and tactics of robot soccer system.

Automatic Determination of Usenet News Groups from User Profile (사용자 프로파일에 기초한 유즈넷 뉴스그룹 자동 결정 방법)

  • Kim, Jong-Wan;Cho, Kyu-Cheol;Kim, Hee-Jae;Kim, Byeong-Man
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.142-149
    • /
    • 2004
  • It is important to retrieve exact information coinciding with user's need from lots of Usenet news and filter desired information quickly. Differently from email system, we must previously register our interesting news group if we want to get the news information. However, it is not easy for a novice to decide which news group is relevant to his or her interests. In this work, we present a service classifying user preferred news groups among various news groups by the use of Kohonen network. We first extract candidate terms from example documents and then choose a number of representative keywords to be used in Kohonen network from them through fuzzy inference. From the observation of training patterns, we could find the sparsity problem that lots of keywords in training patterns are empty. Thus, a new method to train neural network through reduction of unnecessary dimensions by the statistical coefficient of determination is proposed in this paper. Experimental results show that the proposed method is superior to the method using every dimension in terms of cluster overlap defined by using within cluster distance and between cluster distance.