• 제목/요약/키워드: fuzzy inference

Search Result 1,298, Processing Time 1.008 seconds

ANFIS 모형을 이용한 월강수량 예측 (Monthly Precipitation Forecast Using Genetic Algorithm)

  • 신주영;정창삼;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1181-1185
    • /
    • 2009
  • Adaptive Nuero-Fuzzy Inference System(ANFIS) 모형은 인공신경망과 퍼지모형의 특징을 가지는 모형으로 자료간의 관계가 선형이 아닌 비선형관계를 가질 경우 매우 정확한 예측 모형을 구축할 수 있는 특징이 있다. 월강수량 예측이 관측된 기상자료들과 비선형 관계에 있다고 생각되어 ANFIS 모형을 이용하여 월강수량을 예측하였다. 본 연구의 대상 지점으로는 금강유역의 대전 지점으로 선정하였다. 금강유역은 우리나라의 한가운데 위치하여 평균적인 강수형태 및 특징을 보여 좋은 실험유역으로 생각되어 선정하였다. 금강유역의 기상청에서 운영하는 지상 유인관측소 중 비교적 금강유역을 대표하고 양질의 자료가 기록되어 있다고 판단되는 대전지점을 실험지점으로 생각되어 선정하였다. 기상청 대전 유인 관측소에는 총 39년치 기상 자료가 기록되어 있다. 기상청에서는 전국 주요 도시들을 대상으로 2003년부터 월간 예보를 하고 있다. 본 연구에서는 기상청 월간예보와 기상청 대전 유인관측소에서 관측된 5년 치 기상자료를 모델의 입력자료로 구성하였다. 적절한 입력변수 조합을 구성하기 위하여 반복해법을 적용하였다. 5년 치 자료 중 절반은 학습을 시키는데 사용하였고 나머지 절반을 이용하여 모형을 검증하였다. 여러 입력변수를 이용하여 모형의 학습시킨 결과 입력변수가 3개 일 경우 가장 높은 정확도를 보였다. 입력변수가 3개로 학습 시킨 ANFIS 모형과 기상청에서 제공하는 월간예보를 비교해본 결과 ANFIS 모형을 적용하여 월 강수량을 예측하는 것이 기상청에서 제공하는 월간예보보다 높은 정확도를 보이는 것을 확인할 수 있었다.

  • PDF

하.폐수 처리장의 원격 모니터링 및 지식 기반 무인 자동화 시스템 (Knowledge-Based Unmanned Automation and Control Systems for the Wastewater Treatment Processes)

  • 배현;정재룡;서현용;김성신;김창원
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.56-59
    • /
    • 2001
  • In this paper, unmaned fully automation systems are applied for the CSTR(Continuously Stirred Tank Reactor) and, SBR (Sequencing Batch Reactor) wastewater treatment pilot plant. This plant is constructed in the country side which is little far from a main city. So networks and wireless modules are employed for the data transmission. The SBR plant has a local control and monitoring system which is contained communication parts which consist of one ADSL (Asymmetric Digital Subscriber Line) network and one CDMA (Code Division Multiple Access) module. Remote control and monitoring systems are constructed at a laboratory in a metropolis.

  • PDF

TYPE-2 퍼지 추론 구동형 RBF 신경 회로망 설계 및 최적화 (Design of Radial Basis Function Neural Network Driven to TYPE-2 Fuzzy Inference and Its Optimization)

  • 백진열;김웅기;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.247-248
    • /
    • 2008
  • 본 논문에서는 TYPE-2 퍼지 추론 기반의 RBF 뉴럴 네트워크(TYPE-2 Radial Basis Function Neural Network, T2RBFNN)를 설계하고 PSO(Particle Swarm Optimization) 알고리즘을 이용하여 모델의 파라미터를 동정한다. 제안된 모델의 은닉층은 TYPE-2 가우시안 활성 함수로 구성되며, 출력층은 Interval set 형태의 연결가중치를 갖는다. 여기에서 규칙 전반부 활성함수의 중심 선택은 C-means 클러스터링 알고리즘을 이용하고, 규칙 후반부 Interval set 형태의 연결가중치 결정에는 경사 하강법(Gradient descent method)을 이용한 오류 역전파 알고리즘을 사용하여 학습한다. 또한, 최적의 모델을 설계하기 위한 학습율 및 활성함수의 활성화 영역 결정에는 입자 군집 최적화(PSO; Particle Swarm Optimization) 알고리즘으로 동조한다. 마지막으로, 제안된 모델의 평가를 위하여 모의 데이터 집합(Synthetic dadaset)을 적용하고 근사화 및 일반화 능력에 대하여 토의한다.

  • PDF

카메라와 초음파센서 융합에 의한이동로봇의 주행 알고리즘 (Mobile Robot Navigation using Data Fusion Based on Camera and Ultrasonic Sensors Algorithm)

  • 장기동;박상건;한성민;이강웅
    • 한국항행학회논문지
    • /
    • 제15권5호
    • /
    • pp.696-704
    • /
    • 2011
  • 본 논문에서는 단일 카메라와 초음파센서 데이터를 융합하는 이동 로봇 주행제어 알고리즘을 제안하였다. 이진화 영상처리를 위한 임계값을 영상 정보와 초음파센서 정보를 이용하는 퍼지추론기법으로 설정하였다. 임계값을 상황에 따라 가변하면 조도가 낮은 환경에서도 장애물 인식이 향상된다. 카메라 영상 정보와 초음파 센서 정보를 융합하여 장애물에 대한 격자지도를 생성하고 원궤적 경로기법으로 장애물을 회피하도록 한다. 제안된 알고리즘의 성능을 입증하기 위하여 조도가 낮은 실내와 좁은 복도에서 Pioneer 2-DX 이동로봇의 주행제어에 적용하였다.

Application of expert systems in prediction of flexural strength of cement mortars

  • Gulbandilar, Eyyup;Kocak, Yilmaz
    • Computers and Concrete
    • /
    • 제18권1호
    • /
    • pp.1-16
    • /
    • 2016
  • In this study, an Artificial Neural Network (ANN) and Adaptive Network-based Fuzzy Inference Systems (ANFIS) prediction models for flexural strength of the cement mortars have been developed. For purpose of constructing this models, 12 different mixes with 144 specimens of the 2, 7, 28 and 90 days flexural strength experimental results of cement mortars containing pure Portland cement (PC), blast furnace slag (BFS), waste tire rubber powder (WTRP) and BFS+WTRP used in training and testing for ANN and ANFIS were gathered from the standard cement tests. The data used in the ANN and ANFIS models are arranged in a format of four input parameters that cover the Portland cement, BFS, WTRP and age of samples and an output parameter which is flexural strength of cement mortars. The ANN and ANFIS models have produced notable excellent outputs with higher coefficients of determination of $R^2$, RMS and MAPE. For the testing of dataset, the $R^2$, RMS and MAPE values for the ANN model were 0.9892, 0.1715 and 0.0212, respectively. Furthermore, the $R^2$, RMS and MAPE values for the ANFIS model were 0.9831, 0.1947 and 0.0270, respectively. As a result, in the models, the training and testing results indicated that experimental data can be estimated to a superior close extent by the ANN and ANFIS models.

퍼지추론을 이용한 신호교차로에서의 포화차두시간 분석 (An Analysis of Saturation Headway at Signalized Intersections by Using Fuzzy Inference)

  • 김경환;하만복;강덕호
    • 대한교통학회지
    • /
    • 제22권1호
    • /
    • pp.73-82
    • /
    • 2004
  • 신호 교차로에서 포화차두시간에 영향을 미치는 영향인자는 도로조건, 교통조건, 환경조건으로 분류된다. 이러한 요인들의 복합적인 관계가 포화차두시간에 영향을 미친다. 현재 포화교통류율은 이상적인 조건일 때의 포화차두시간을 산출하고, 이를 이용해서 기본 포화교통류율을 구하고, 여기에 좌 우회전, 차로폭, 경사, 중차량 보정계수을 고려함으로써 특정 차로군의 포화교통류율을 산정하고 있다. 포화차두시간에 영향을 미치는 인자들 중에서 정량적으로 나타내기 어려운 인자 즉, 퍼지적 성격을 가진 인자들은 고려하지 않고 있다. 따라서 본 연구에서는 퍼지 근사추론 방법을 이용하여 정성적 인자의 영향을 고려한 모형을 구축하였다. 모형의 입력자료는 강우조건과 주변밝기의 정도, 중차량 구성비의 언어적 표현를 사용하였다. 이러한 변수들에 대하여 설문조사를 통해서 퍼지집합의 멤버쉽함수를 설정하였으며. 이에 기초하여 교차로에서 각 조건별로 포화차두시간을 관측하였다. 이러한 현장 관측치를 바탕으로 퍼지 제어규칙을 설정하고 모형을 구축하였다. 모형의 평가는 추론치와 실측치를 비교함으로써 이루어 졌으며, 결정계수인 $R^2$와 평균절대오차(MAE)와 평균제곱오차(MSE)를 사용하여 분석한 결과 본 모형의 설명력이 높은 것으로 평가되었다. 본 연구의 과정에서 강우에 의한 교통용량 감소는 중차량 구성비가 클수록 주변밝기의 정도가 나쁠수록 더욱 큰 것으로 나타났으며 그 감소율은 5.3%에서 21.8%에 이르는 넓은 범위의 값을 보였고. 주변밝기 정도에 따른 교통용량 감소는 4.7$\sim$7.5% 수준으로 나타났다.

인간친화적인 안내 로봇 연구 (A Study on Human-Friendly Guide Robot)

  • 최우경;김성주;하상형;전홍태
    • 전자공학회논문지SC
    • /
    • 제43권6호
    • /
    • pp.9-15
    • /
    • 2006
  • 최근 로봇 개발의 현황을 살펴보면 인간과 로봇이 공존하면서 인간이 로봇으로부터 서비스를 받을 수 있는 로봇의 개발이 지속적으로 증가하는 추세다. 그 중에서도 특히 관심을 끌고 있는 것은 복지 로봇에 관한 연구이다. 현재 가장 일반화되어 있는 복지 로봇은 시각 장애인의 주행을 도와주는 안내 로봇이며 장애물을 인식하여 안전한 경로를 제공하는 것을 목적으로 한다. 본 논문에서는 장애물 충돌회피의 기능뿐만 다양한 센서를 장착하여 환경 정보를 파악하여 사용자에게 가장 안전한 이동방향과 이동 속도를 제시한다. 또한 지도 정보를 이용하여 사용자에게 가장 친숙하고 안전한 주행 경로를 선택하는 안내 로봇을 제시한다.

가속도계를 이용한 인체동작상태 상황인식 (Context Awareness of Human Motion States Using a Accelerometer Sensor)

  • 진계환;이상복;이태수
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2005년도 추계 종합학술대회 논문집
    • /
    • pp.264-268
    • /
    • 2005
  • 본 논문에서는 유비쿼터스 컴퓨팅 기술의 여러응용 서비스에서 가장 핵심적인 요소 기술 중의 하나인 사용자의 상황인식시스템에 대하여 기술한다. 제안하는 시스템은 실험 대상자의 우측 상완에 착용하는 $SenseWear^{(R)}$ PRO2 Armband(BodyMedia사)에 내장된 2차원 가속도센서를 이용하여 데이터를 획득하고, 눕기, 앉기, 걷기, 뛰기 4단계 동작의 인체동작상태의 구분은 PC 기반의 퍼지추론 시스템으로 구현 하였다. 이를 이용하여 분석한 인체동작 인식률은 눕기, 앉기, 걷기 뛰기에 대하여 각각 100%, 98.64%, 99.27%, 100%로 나타났다.

  • PDF

LPC와 DNN을 결합한 유도전동기 고장진단 (Fault Diagnosis of Induction Motor using Linear Predictive Coding and Deep Neural Network)

  • 류진원;박민수;김남규;정의필;이정철
    • 한국멀티미디어학회논문지
    • /
    • 제20권11호
    • /
    • pp.1811-1819
    • /
    • 2017
  • As the induction motor is the core production equipment of the industry, it is necessary to construct a fault prediction and diagnosis system through continuous monitoring. Many researches have been conducted on motor fault diagnosis algorithm based on signal processing techniques using Fourier transform, neural networks, and fuzzy inference techniques. In this paper, we propose a fault diagnosis method of induction motor using LPC and DNN. To evaluate the performance of the proposed method, the fault diagnosis was carried out using the vibration data of the induction motor in steady state and simulated various fault conditions. Experimental results show that the learning time of our proposed method and the conventional spectrum+DNN method is 139 seconds and 974 seconds each executed on the experimental PC, and our method reduces execution time by 1/8 compared with conventional method. And the success rate of the proposed method is 98.08%, which is similar to 99.54% of the conventional method.

Comparison between the Application Results of NNM and a GIS-based Decision Support System for Prediction of Ground Level SO2 Concentration in a Coastal Area

  • Park, Ok-Hyun;Seok, Min-Gwang;Sin, Ji-Young
    • Environmental Engineering Research
    • /
    • 제14권2호
    • /
    • pp.111-119
    • /
    • 2009
  • A prototype GIS-based decision support system (DSS) was developed by using a database management system (DBMS), a model management system (MMS), a knowledge-based system (KBS), a graphical user interface (GUI), and a geographical information system (GIS). The method of selecting a dispersion model or a modeling scheme, originally devised by Park and Seok, was developed using our GIS-based DSS. The performances of candidate models or modeling schemes were evaluated by using a single index(statistical score) derived by applying fuzzy inference to statistical measures between the measured and predicted concentrations. The fumigation dispersion model performed better than the models such as industrial source complex short term model(ISCST) and atmospheric dispersion model system(ADMS) for the prediction of the ground level $SO_2$ (1 hr) concentration in a coastal area. However, its coincidence level between actual and calculated values was poor. The neural network models were found to improve the accuracy of predicted ground level $SO_2$ concentration significantly, compared to the fumigation models. The GIS-based DSS may serve as a useful tool for selecting the best prediction model, even for complex terrains.