• Title/Summary/Keyword: fuzzy inference

Search Result 1,297, Processing Time 0.028 seconds

adaptive neuro-fuzzy inference system;daily solar radiation;Illinois;limited weather variables;

  • Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.483-486
    • /
    • 2015
  • The objective of this study is to develop generalized regression neural networks (GRNN) model for estimating daily solar radiation using limited weather variables at Champaign and Springfield stations in Illinois. The best input combinations (one, two, and three inputs) can be identified using GRNN model. From the performance evaluation and scatter diagrams of GRNN model, GRNN 3 (three input) model produces the best results for both stations. Results obtained indicate that GRNN model can successfully be used for the estimation of daily global solar radiation at Champaign and Springfield stations in Illinois. These results testify the generation capability of GRNN model and its ability to produce accurate estimates in Illinois.

  • PDF

CareMyDog: Pet Dog Disease Information System with PFCM Inference for Pre-diagnosis by Caregiver

  • Kim, Kwang Baek;Song, Doo Heon;Park, Hyun Jun
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2021
  • While the population of pet dogs and pet-related markets are increasing, there is no convenient and reliable tool for pet health monitoring for pet owners/caregivers. In this paper, we propose a mobile platform-based pre-diagnosis system that pet owners can use for pre-diagnosis and obtaining information on coping strategies based on their observations of the pet dog's abnormal behavior. The proposed system constructs symptom-disease association databases for 100 frequently observed diseases under veterinarian guidance. Then, we apply the possibilistic fuzzy C-means algorithm to form the "probable disease" set and the "doubtable disease" set from the database. In the experiment, we found that the proposed system found almost all diseases correctly, with an average of 4.5 input symptoms and outputs 1.5 probable and one doubtable disease on average. The utility of this system is to alert the owner's attention to the pet dog's abnormal behavior and obtain an appropriate coping strategy before consult a veterinarian.

Performance Improvement of Fuzzy C-Means Clustering Algorithm by Optimized Early Stopping for Inhomogeneous Datasets

  • Chae-Rim Han;Sun-Jin Lee;Il-Gu Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.3
    • /
    • pp.198-207
    • /
    • 2023
  • Responding to changes in artificial intelligence models and the data environment is crucial for increasing data-learning accuracy and inference stability of industrial applications. A learning model that is overfitted to specific training data leads to poor learning performance and a deterioration in flexibility. Therefore, an early stopping technique is used to stop learning at an appropriate time. However, this technique does not consider the homogeneity and independence of the data collected by heterogeneous nodes in a differential network environment, thus resulting in low learning accuracy and degradation of system performance. In this study, the generalization performance of neural networks is maximized, whereas the effect of the homogeneity of datasets is minimized by achieving an accuracy of 99.7%. This corresponds to a decrease in delay time by a factor of 2.33 and improvement in performance by a factor of 2.5 compared with the conventional method.

Nano-medicine effectiveness in pediatric patients: An artificial intelligence investigation

  • Shaona Wang;Fan Yang
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.129-139
    • /
    • 2023
  • Emerge of nanotechnology has affected many aspects of our life and also triggers research studies in many fields. Nano-medicine are proven to be effective in encountering diseases. In the present study, aspects of the applications and effectiveness of nano-medicine in pediatrics patients are studied. In this regard, using experimental data of previous published researches, combination and dose of nano-medicines are optimized using response surface method and neural-fuzzy inference network. The input parameters of the selected multiple nano-medicines are dose and type and the output is the effectiveness of the combinations using IC50 parameter. A detailed parameter study is presented to observe effects of each inputs on the IC50. The results indicate that personalized scaling of nano-medicine is required in therapy of pediatric diseases such as cancers.

Design of Sliding Mode Fuzzy Controller for Vibration Reduction of Large Structures (대형구조물의 진동 감소를 위한 슬라이딩 모드 퍼지 제어기의 설계)

  • 윤정방;김상범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.63-74
    • /
    • 1999
  • A sliding mode fuzzy control (SMFC) algorithm is presented for vibration of large structures. Rule-base of the fuzzy inference engine is constructed based on the sliding mode control, which is one of the nonlinear control algorithms. Fuzziness of the controller makes the control system robust against the uncertainties in the system parameters and the input excitation. Non-linearity of the control rule makes the controller more effective than linear controllers. Design procedure based on the present fuzzy control is more convenient than those of the conventional algorithms based on complex mathematical analysis, such as linear quadratic regulator and sliding mode control(SMC). Robustness of presented controller is illustrated by examining the loop transfer function. For verification of the present algorithm, a numerical study is carried out on the benchmark problem initiated by the ASCE Committee on Structural Control. To achieve a high level of realism, various aspects are considered such as actuator-structure interaction, modeling error, sensor noise, actuator time delay, precision of the A/D and D/A converters, magnitude of control force, and order of control model. Performance of the SMFC is examined in comparison with those of other control algorithms such as $H_{mixed 2/{\infty}}$ optimal polynomial control, neural networks control, and SMC, which were reported by other researchers. The results indicate that the present SMFC is an efficient and attractive control method, since the vibration responses of the structure can be reduced very effectively and the design procedure is simple and convenient.

  • PDF

Building a Model to Estimate Pedestrians' Critical Lags on Crosswalks (횡단보도에서의 보행자의 임계간격추정 모형 구축)

  • Kim, Kyung Whan;Kim, Daehyon;Lee, Ik Su;Lee, Deok Whan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.33-40
    • /
    • 2009
  • The critical lag of crosswalk pedestrians is an important parameter in analyzing traffic operation at unsignalized crosswalks, however there is few research in this field in Korea. The purpose of this study is to develop a model to estimate the critical lag. Among the elements which influence the critical lag, the age of pedestrians and the length of crosswalks, which have fuzzy characteristics, and the each lag which is rejected or accepted are collected on crosswalks of which lengths range from 3.5 m to 10.5 m. The values of the critical lag range from 2.56 sec. to 5.56 sec. The age and the length are divided to the 3 fuzzy variables each, and the critical lag of each case is estimated according to Raff's technique, so a total of 9 fuzzy rules are established. Based on the rules, an ANFIS (Adaptive Neuro-Fuzzy Inference System) model to estimate the critical lag is built. The predictability of the model is evaluated comparing the observed with the estimated critical lags by the model. Statistics of $R^2$, MAE, MSE are 0.96, 0.097, 0.015 respectively. Therefore, the model is evaluated to explain the result well. During this study, it is found that the critical lag increases rapidly over the pedestrian's age of 40 years.

Multi-FNN Identification by Means of HCM Clustering and ITs Optimization Using Genetic Algorithms (HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화)

  • 오성권;박호성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.487-496
    • /
    • 2000
  • In this paper, the Multi-FNN(Fuzzy-Neural Networks) model is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNN is based on Yamakawa's FNN and uses simplified inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and Genetic Algorithms(GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNN model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. The aggregate performance index stands for an aggregate objective function with a weighting factor to consider a mutual balance and dependency between approximation and predictive abilities. According to the selection and adjustment of a weighting factor of this aggregate abjective function which depends on the number of data and a certain degree of nonlinearity, we show that it is available and effective to design an optimal Multi-FNN model. To evaluate the performance of the proposed model, we use the time series data for gas furnace and the numerical data of nonlinear function.

  • PDF

Implementation on the evolutionary machine learning approaches for streamflow forecasting: case study in the Seybous River, Algeria (유출예측을 위한 진화적 기계학습 접근법의 구현: 알제리 세이보스 하천의 사례연구)

  • Zakhrouf, Mousaab;Bouchelkia, Hamid;Stamboul, Madani;Kim, Sungwon;Singh, Vijay P.
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.395-408
    • /
    • 2020
  • This paper aims to develop and apply three different machine learning approaches (i.e., artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and wavelet-based neural networks (WNN)) combined with an evolutionary optimization algorithm and the k-fold cross validation for multi-step (days) streamflow forecasting at the catchment located in Algeria, North Africa. The ANN and ANFIS models yielded similar performances, based on four different statistical indices (i.e., root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), and peak flow criteria (PFC)) for training and testing phases. The values of RMSE and PFC for the WNN model (e.g., RMSE = 8.590 ㎥/sec, PFC = 0.252 for (t+1) day, testing phase) were lower than those of ANN (e.g., RMSE = 19.120 ㎥/sec, PFC = 0.446 for (t+1) day, testing phase) and ANFIS (e.g., RMSE = 18.520 ㎥/sec, PFC = 0.444 for (t+1) day, testing phase) models, while the values of NSE and R for WNN model were higher than those of ANNs and ANFIS models. Therefore, the new approach can be a robust tool for multi-step (days) streamflow forecasting in the Seybous River, Algeria.

Comparison of Intelligent Color Classifier for Urine Analysis (요 분석을 위한 지능형 컬러 분류기 비교)

  • Eom Sang-Hoon;Kim Hyung-Il;Jeon Gye-Rok;Eom Sang-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1319-1325
    • /
    • 2006
  • Urine analysis is basic test in clinical medicine using visual examination by expert nurse. Recently, this test is measured by automatic urine analysis system. But, this system has different results by each instrument. So, a new classification algorithm is required for accurate classify and urine color collection. In this paper, a intelligent color classifier of urine analysis system was designed using neural network algorithm. The input parameters are three stimulus(RGB) after preprocessing using normalization. The fuzzy inference and neural network ware constructed for classify class according to 9 urine test items and $3{\sim}7$ classes. The experiment material to be used a standard sample of medicine. The possibility to adapt classifier designed for urine analysis system was verified as classifying measured standard samples and observing classified result. Of many test items, experimental results showed a satisfactory agreement with test results of reference system.

Material Recognition Sensor Using Fuzzy Neural Network Inference of Thermal Conductivity (퍼지신경회로망의 열전도도 추론에 의한 재질인식센서의 개발)

  • Lim, Young-Cheol;Park, Jin-Kyu;Ryoo, Young-Jae;Wi, Seog-O;Park, Jin-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.37-46
    • /
    • 1996
  • This paper describes a system that can be used to recognize unknown materials regardless of the change in ambient temperature by using temperature response curve fitting and fuzzy neural network(FNN). There are problems with a recognition system which utilize temperature responses. It requires too many memories to store the vast temperature response data and it has to be filtered to remove the noise which occurs in experiments. Thus, this paper proposes a practical method using curve fitting to remove the above problems of memories and noise. Also, the FNN is proposed to overcome the problem caused by the change of ambient temperature. Using the FNN which is learned by temperature responses on fixed ambient temperatures and known thermal conductivity, the thermal conductivity of the material can be inferred on various ambient temperatures. So the material can be recognized via its thermal conductivity.

  • PDF