• Title/Summary/Keyword: fuzzy gain

Search Result 315, Processing Time 0.035 seconds

Fuzzy Controller for Nonlinear Systems Using Intelligent Digital Redesign (지능형 디지털 재설계기법을 이용한 비선형 시스템의 제어기 설계)

  • 이상준;이남수;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.176-179
    • /
    • 2000
  • This paper addresses a fuzzy controller for nonlinear systems control using a pole placement in a specified disk and fuzzy controller is redesign for Intelligent digital redesign method. for nonlinear system, we obtain continuous time state feedback gain that guarantee stability of globally TS fuzzy system. The feedback gain is satified pole placement in a specified disk region so that the closed loop system is stable, For digital control redesgin of continuous time TS fuzzy model, we does state matching and obtain feedback gain of digital controller. Finally, it is shown that the proposed method is feasible through a computer simulation.

  • PDF

IMM Method Using Kalman Filter with Fuzzy Gain (퍼지 게인을 갖는 칼만필터를 이용한 IMM 기법)

  • Hoh Sun-Young;Joo Young-Hoon;Park Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.425-428
    • /
    • 2006
  • In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, to exactly estimate for each sub-model, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). Finally, the tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and input estimation (IE) method through computer simulations.

  • PDF

Investigation of PID Fuzzy Controller for Output Voltage Regulation of Current-Doubler-Rectified Asymmetric Half-Bridge DC/DC Converter

  • Chung, Gyo-Bum
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.21-27
    • /
    • 2007
  • This paper investigates a PID fuzzy controller for output voltage regulation of a current-doubler-rectified asymmetric half-bridge (CDRAHB) DC/DC converter. The controller is a PD-type fuzzy controller in parallel with a linear integral controller. The PD type fuzzy controller is for providing the varying gain at the different operating conditions to regulate the output voltage. The linear integral controller is for removing the steady-state error of the output voltage. In order to show the outstanding dynamic characteristics of the proposed controller, PSIM simulation studies are carried out and compared to the results for which the conventional loop gain design method is used.

IMM Method Using Kalman Filter with Fuzzy Gain

  • Noh, Sun-Young;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.234-239
    • /
    • 2006
  • In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, the unknown acceleration input for each sub-model is determined by mismatches between the modelled target dynamics and the actual target dynamics. After a acceleration input is detected, the state estimates for each sub-filter are modified. To modify the accurate estimation, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model(AIMM) method and input estimation (IE) method through computer simulations.

The design T-S fuzzy model-based target tracking systems (T-S 퍼지모델 기반 표적추적 시스템)

  • Hoh Sun-Young;Joo Young-Hoon;Park Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.419-422
    • /
    • 2005
  • In this note, the Takagi-Sugeno (T-S) fuzzy-model-based state estimator using standard Kalman filter theory is investigated. In that case, the dynamic system model is represented the T-S fuzzy model with the fuzzy state estimation. The steady state solutions can be found for proposed modeling method and dynamic system for maneuvering targets can be approximated as locally linear system. And then, modeled filter is corrected by the fuzzy gain which is a fuzzy system using the relation between the filter residual and its variation. This paper studies the T-S fuzzy model-based state estimator which the dynamic system can be approximated as linear system.

  • PDF

Design of a Adaptive High-Gain Observer for Speed-Sensorless Control of DC Servo Motor (센서없는 직류서보전동기의 속도 제어를 위한 적응 고이득 관측기 설계)

  • 김상훈;김낙교
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.663-670
    • /
    • 2003
  • This paper deals with speed control of DC servo motor using a Adaptive high gain obserber. In this parer, the gain of the observer is properly set up using the fuzzy control and adaptive high gain observer that have a superior transient characteristic and is easy to implement compared the existing method is designed. In order to verify the performance of the Adaptive high gain observer which is proposed in this paper, it is compared estimate performance of High-gain Observer and Adaptive High Gain Observer with the computer simulation. Effectiveness of the proposed high gain observer is proved from the experiment to compare the case with a speed sensor to the case with Adaptive high gain observer in the speed control of DC servo motor.

Fuzzy Based Control Gain Auto-Tuning of Servo Driver (퍼지를 이용한 서보드라이버의 제어 개인 자동 조정)

  • Kong, Young-Bae;Seo, Ho-Joon;Park, Gwi-Tae;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.541-543
    • /
    • 1998
  • Generally, PI control is simple and easy to implement and gains of PI control are determined by specifying a dynamics of the servo driver system. However, the gain-tuning is so difficult that it is relied on an expert's effort. This paper presents a gain auto-tuning method for PI controllers based on a fuzzy inference mechanism. First, the proposed fuzzy inference system identifies a system moment of inertia and adjusts control gains by using the difference in speed responses between a real plant and a reference model. Second, this paper proposes an improved fuzzy PI controller. To reduce the speed overshoot, we adapt a control method that selects a proper PI gains with respect to the load inertia variation. To prove the validity of the proposed gain tuning algorithm and the feasibility of the servo drive, a high performance servo drive will be implemented by DSP(TMS320C31) and intelligent power module (IPM). The proposed controller is applied to the speed control of the 300W AC servo motor. Some simulations and experimental results show that the proposed fuzzy PI controller is more robust than the conventional PI controller against the load inertia variation.

  • PDF

A Study on Idle Speed Control Using Fuzzy Logic (퍼지 논리를 이용한 공회전 속도 제어에 관한 연구)

  • Ko, D.W.;Lee, Y.N.;Lee, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.23-29
    • /
    • 1994
  • The design procedure for fuzzy logic controller depends on the expert's knowledge or trial and error. Moreover, it is very difficult to guarantee the stability and robustness of the system due to the linguistic expression of fuzzy control. However, fuzzy logic control has succeeded in many control problems that the conventional control theory has difficulties to deal with. As a result, this control theory is applied to the engine control system which a mathematical model is difficult. In this study, the fuzzy logic is applied to obtain the gain of PI control at idle speed control system, and a simple engine model is developed in order to perform simulation. Experimental results show that the response to reach the target engine speed at idle speed control system is improved by adopting the gain obtained with fuzzy logic.

  • PDF

Design of Guidance and Control Algorithm for Autolanding In Windshear Environment Using Fuzzy Gain Scheduling (퍼지 게인스케듈링을 적용한 자동착륙 유도제어 알고리즘 설계 : 윈쉬어 환경에서의 착륙)

  • Ha, Cheol-Keun;Ahn, Sang-Woon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.95-103
    • /
    • 2008
  • This paper deals with the problem of autolanding for aircraft under windshear environment for which the landing trajectory is given. It is well known that the landing maneuver in windshear turbulence is very dangerous and hard for the pilot to control because windshear is unpredictable in when and where it happens and its aerodynamic characteristics are complicated. In order to accomplish satisfactory autolanding maneuver in this environment, we propose a gain-scheduled controller. The proposed controller consists of three parts: PID controller, called baseline controller, which is designed to satisfy requirements of stability and performance without considering windshear, gain scheduler based on fuzzy logic, and safety decision logic, which decides if the current autolanding maneuver needs to be aborted or not. The controller is applied to a 6-DOF simulation model of the associated airplane in order to illustrate the effectiveness of the proposed control algorithm. It is noted that a cross wind in the lateral direction is included to the simulation model. From the simulation results it is observed that the proposed gain scheduled controller shows superior performance than the case of controller without gain scheduling even in severe downburst and tailwind region of windshear. In addition, touchdown along centerline of the runway is more precise for the proposed controller than for the controller without gain scheduling in the cross wind and the tailwind.

Online Automatic Gauge Controller Tuning Method by using Neuro-Fuzzy Model in a Hot Rolling Plant

  • Choi, Sung-Hoo;Lee, Young-Kow;Kim, Sang-Woo;Hong, Sung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1539-1544
    • /
    • 2005
  • The gauge control of the fishing mill is very important because more and more accurately sized hot rolled coils are demanded by customers recently. Because the mill constant and the plasticity coefficient vary with the specifications of the mill, the classification of steel, the strip width, the strip thickness and the slab temperature, the variation of these parameters should be considered in the automatic gauge control system(AGC). Generally, the AGC gain is used to minimize the effect of the uncertain parameters. In a practical field, operators set the AGC gain as a constant value calculated by FSU (Finishing-mill Set-Up model) and it is not changed during the operating time. In this paper, the thickness data signals that occupy different frequency bands are respectively extracted by adaptive filters and then the main cause of the thickness variation is analyzed. Additionally, the AGC gain is adaptively tuned to reduce this variation using the online tuning model. Especially ANFIS(Adaptive-Neuro-based Fuzzy Interface System) which unifies both fuzzy logics and neural networks, is used for this gain adjustment system because fuzzy logics use the professionals' experiences about the uncertainty and the nonlinearity of the system. Simulation is performed by using POSCO's data and the results show that proposed on-line gain adjustment algorithm has a good performance.

  • PDF