• Title/Summary/Keyword: fuzzy edge

Search Result 131, Processing Time 0.024 seconds

Dempster-Shafer's Evidence Theory-based Edge Detection

  • Seo, Suk-Tae;Sivakumar, Krishnamoorthy;Kwon, Soon-Hak
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • Edges represent significant boundary information between objects or classes. Various methods, which are based on differential operation, such as Sobel, Prewitt, Roberts, Canny, and etc. have been proposed and widely used. The methods are based on a linear convolution of mask with pre-assigned coefficients. In this paper, we propose an edge detection method based on Dempster-Shafer's evidence theory to evaluate edgeness of the given pixel. The effectiveness of the proposed method is shown through experimental results on several test images and compared with conventional methods.

Edge Detection in noisy Images by means of Fuzzy Entropy (퍼지엔트로피에 의한 잡음영상의 경계검출)

  • 박인규
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.04a
    • /
    • pp.170-173
    • /
    • 2000
  • 잡음에 오염된 영상의 경계검출에 대한 퍼지연산자를 보강하였다. 제한된 방법은 데이터에 존재하는 잡음에 강인한 경계를 검출하기 위하여 퍼지 엔트로피에 의한 퍼지추론을 이용한다. 퍼지기법이 영상의 세세한 정보의 검출과 잡음에 대한 민감도의 관점에서 보았을 때 기존의 방법들보다 성능이 우수하다는 것을 여러 실험결과를 통하여 알 수 있었다.

  • PDF

Image segmentation using fuzzy worm searching and adaptive MIN-MAX clustering based on genetic algorithm (유전 알고리즘에 기반한 퍼지 벌레 검색과 자율 적응 최소-최대 군집화를 이용한 영상 영역화)

  • Ha, Seong-Wook;Kang, Dae-Seong;Kim, Dai-Jin
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.109-120
    • /
    • 1998
  • An image segmentation approach based on the fuzzy worm searching and MIN-MAX clustering algorithm is proposed in this paper. This algorithm deals with fuzzy worm value and min-max node at a gross scene level, which investigates the edge information including fuzzy worm action and spatial relationship of the pixels as the parameters of its objective function. But the conventional segmentation methods for edge extraction generally need the mask information for the algebraic model, and take long run times at mask operation, whereas the proposed algorithm has single operation according to active searching of fuzzy worms. In addition, we also propose both genetic fuzzy worm searching and genetic min-max clustering using genetic algorithm to complete clustering and fuzzy searching on grey-histogram of image for the optimum solution, which can automatically determine the size of ranges and has both strong robust and speedy calculation. The simulation results showed that the proposed algorithm adaptively divided the quantized images in histogram region and performed single searching methods, significantly alleviating the increase of the computational load and the memory requirements.

  • PDF

Facial Expression Recognition with Fuzzy C-Means Clusstering Algorithm and Neural Network Based on Gabor Wavelets

  • Youngsuk Shin;Chansup Chung;Lee, Yillbyung
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.126-132
    • /
    • 2000
  • This paper presents a facial expression recognition based on Gabor wavelets that uses a fuzzy C-means(FCM) clustering algorithm and neural network. Features of facial expressions are extracted to two steps. In the first step, Gabor wavelet representation can provide edges extraction of major face components using the average value of the image's 2-D Gabor wavelet coefficient histogram. In the next step, we extract sparse features of facial expressions from the extracted edge information using FCM clustering algorithm. The result of facial expression recognition is compared with dimensional values of internal stated derived from semantic ratings of words related to emotion. The dimensional model can recognize not only six facial expressions related to Ekman's basic emotions, but also expressions of various internal states.

  • PDF

An Enhanced Algorithm for an Optimal High-Frequency Emphasis Filter Based on Fuzzy Logic for Chest X-Ray Images

  • Shin, Choong-Ho;Lee, Jung-Jai;Jung, Chai-Yeoung
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.264-269
    • /
    • 2015
  • The chest X-ray image cannot be focused in the same manner that optical lenses are and the resultant image generally tends to be slightly blurred. Therefore, the methods to improve the quality of chest X-ray image have been studied. In this paper, the inherent noises of the input images are suppressed by adding the Laplacian image to the original. First, the chest X-ray image using an Gaussian high pass filter and an optimal high frequency emphasis filter has shown improvements in the edges and contrast of flat areas. Second, using fuzzy logic_histogram equalization, each pixel of the chest X-ray image shows the normal distribution of intensities that are not overexposed. As a result, the proposed method has shown the enhanced edge and contrast of the images with the noise canceling effect.

Design and Implementation of Fuzzy Logic Controller for Wing Rock

  • Anavatti, Sreenatha G.;Choi, Jin Young;Wong, Pupin P.
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.494-500
    • /
    • 2004
  • The wing rock phenomenon is a high angle of attack aerodynamic motion manifested by limit cycle roll oscillations. Experimental studies reveal that direct control and manipulation of leading edge vortices, through the use of 'blowing' techniques is effective in the suppression of wing rock. This paper presents the design of a robust controller for the experimental implementation of one such 'blowing' technique - recessed angle spanwise blowing (RASB), to achieve wing rock suppression over a range of operating conditions. The robust controller employs Takagi - Sugeno fuzzy system, which is fine-tuned by experimental simulations. Performance of the controller is assessed by real-time wind tunnel experiments with an 80 degree swept back delta wing. Robustness is demonstrated by the suppression of wing rock at a range of angles of attack and free stream velocities. Numerical simulation results are used to further substantiate the experimental findings.

Intelligent Control of Cybernetic Below-Elbow Prosthesis

  • Edge C. Yeh;Wen Ping;Chan, Rai-Chi;Tseng, Chi-Ching
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1025-1028
    • /
    • 1993
  • In this paper, an intelligent control scheme with multi-stage fuzzy inference is developed for a myoelectric prosthesis to achieve natural control with tactile feedback based on fuzzy control strategies. Strain gauges and a potentiometer are added to the prosthesis for tactile feedback with a PWM motor driver developed to save the battery power. According to the multi-stage fuzzy inference, the prosthesis can determine the stiffness of the object and hold an object without injuring it, meanwhile, the hysteresis phenomenon is an 80196KC single-chip microcontroller to replace the original controller.

  • PDF

On the Effect of ON-DOCK System to the Sharpening of Competitiveness Edge of the Pusan Port (ON-DOCK 서비스 시스템이 부산항 경쟁력 향상에 미치는 영향)

  • Yang, W.;Lee, C.Y.
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 1999
  • Port competition is generally classified into two type of inter-domestic ports and intermational ports and the latter is measured how to secure the function of intermediacy for foreign cargoes among competing parts. In the Northeast Asia top 20 world container ports such as Pusan, Kobe, Yokohama and Kaohsiung are struggling to induce transshipment containers generated in the North China region. This paper aims to analyze and evaluate the competitive factors of the said ports such as port site facilities expenses service level and flexibility of management and operations and suggest the feasible strategies that the Pusan Port to be viable transshipment center in the region. The evaluation is attempted twice. First attempt is evaluated by present conditions of each port and second attempt by upgraded conditions of evaluation value such as port service level and flexibility of port management and operations resulted from the implementation of the ON-DOCK service system. The results of evaluation are as follows; (1) Port competitiveness of first evaluation is ranked in Kobe=Kaohsiung >Pusan>Yokohama. (2) Second evaluation is resulted in Kobe> Pusan= Kaohsiung>Yokohama. According to this results the competitiveness edge of the Pusan Port is able to strengthen by implementation of the ON-DOCk system.

  • PDF

Design of Navigation Algorithm for Mobile Robot using Sensor fusion (센서 합성을 이용한 자율이동로봇의 주행 알고리즘 설계)

  • Kim Jung-Hoon;Kim young-Joong;Lim Myo-Teag
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.703-713
    • /
    • 2004
  • This paper presents the new obstacle avoidance method that is composed of vision and sonar sensors, also a navigation algorithm is proposed. Sonar sensors provide poor information because the angular resolution of each sonar sensor is not exact. So they are not suitable to detect relative direction of obstacles. In addition, it is not easy to detect the obstacle by vision sensors because of an image disturbance. In This paper, the new obstacle direction measurement method that is composed of sonar sensors for exact distance information and vision sensors for abundance information. The modified splitting/merging algorithm is proposed, and it is robuster for an image disturbance than the edge detecting algorithm, and it is efficient for grouping of the obstacle. In order to verify our proposed algorithm, we compare the proposed algorithm with the edge detecting algorithm via experiments. The direction of obstacle and the relative distance are used for the inputs of the fuzzy controller. We design the angular velocity controllers for obstacle avoidance and for navigation to center in corridor, respectively. In order to verify stability and effectiveness of our proposed method, it is apply to a vision and sonar based mobile robot navigation system.

Hybrid Filter Based on Neural Networks for Removing Quantum Noise in Low-Dose Medical X-ray CT Images

  • Park, Keunho;Lee, Hee-Shin;Lee, Joonwhoan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.102-110
    • /
    • 2015
  • The main source of noise in computed tomography (CT) images is a quantum noise, which results from statistical fluctuations of X-ray quanta reaching the detector. This paper proposes a neural network (NN) based hybrid filter for removing quantum noise. The proposed filter consists of bilateral filters (BFs), a single or multiple neural edge enhancer(s) (NEE), and a neural filter (NF) to combine them. The BFs take into account the difference in value from the neighbors, to preserve edges while smoothing. The NEE is used to clearly enhance the desired edges from noisy images. The NF acts like a fusion operator, and attempts to construct an enhanced output image. Several measurements are used to evaluate the image quality, like the root mean square error (RMSE), the improvement in signal to noise ratio (ISNR), the standard deviation ratio (MSR), and the contrast to noise ratio (CNR). Also, the modulation transfer function (MTF) is used as a means of determining how well the edge structure is preserved. In terms of all those measurements and means, the proposed filter shows better performance than the guided filter, and the nonlocal means (NLM) filter. In addition, there is no severe restriction to select the number of inputs for the fusion operator differently from the neuro-fuzzy system. Therefore, without concerning too much about the filter selection for fusion, one could apply the proposed hybrid filter to various images with different modalities, once the corresponding noise characteristics are explored.