• Title/Summary/Keyword: fuzzy clustering

Search Result 732, Processing Time 0.031 seconds

Fuzzy k-Means Local Centers of the Social Networks

  • Woo, Won-Seok;Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.2
    • /
    • pp.213-217
    • /
    • 2012
  • Fuzzy k-means clustering is an attractive alternative to the ordinary k-means clustering in analyzing multivariate data. Fuzzy versions yield more natural output by allowing overlapped k groups. In this study, we modify a fuzzy k-means clustering algorithm to be used for undirected social networks, apply the algorithm to both real and simulated cases, and report the results.

Color Data Clustering Algorithm using Fuzzy Color Model (퍼지컬러 모델을 이용한 컬러 데이터 클러스터링 알고리즘1)

  • Kim, Dae-Won;Lee, Kwang H.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.119-122
    • /
    • 2002
  • The research Interest of this paper is focused on the efficient clustering task for an arbitrary color data. In order to tackle this problem, we have tiled to model the inherent uncertainty and vagueness of color data using fuzzy color model. By laking a fuzzy approach to color modeling, we could make a soft decision for the vague regions between neighboring colors. The proposed fuzzy color model defined a three dimensional fuzzy color ball and color membership computation method with the two inter-color distance measures. With the fuzzy color model, we developed a new fuzzy clustering algorithm for an efficient partition of color data. Each fuzzy cluster set has a cluster prototype which is represented by fuzzy color centroid.

  • PDF

Segmentation of Color Image by Subtractive and Gravity Fuzzy C-means Clustering (차감 및 중력 fuzzy C-means 클러스터링을 이용한 칼라 영상 분할에 관한 연구)

  • Jin, Young-Goun;Kim, Tae-Gyun
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.93-100
    • /
    • 1997
  • In general, fuzzy C-means clustering method was used on the segmentation of true color image. However, this method requires number of clusters as an input. In this study, we suggest new method that uses subtractive and gravity fuzzy C-means clustering. We get number of clusters and initial cluster centers by applying subtractive clustering on color image. After coarse segmentation of the image, we apply gravity fuzzy C-means for optimizing segmentation of the image. We show efficiency of the proposed algorithm by qualitative evaluation.

  • PDF

Design of Fuzzy Neural Networks Based on Fuzzy Clustering and Its Application (퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계 및 적용)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.378-384
    • /
    • 2013
  • In this paper, we propose the fuzzy neural networks based on fuzzy c-means clustering algorithm. Typically, the generation of fuzzy rules have the problem that the number of fuzzy rules exponentially increases when the dimension increases. To solve this problem, the fuzzy rules of the proposed networks are generated by partitioning the input space in the scatter form using FCM clustering algorithm. The premise parameters of the fuzzy rules are determined by membership matrix by means of FCM clustering algorithm. The consequence part of the rules is expressed in the form of polynomial functions and the learning of fuzzy neural networks is realized by adjusting connections of the neurons, and it follows a back-propagation algorithm. The proposed networks are evaluated through the application to nonlinear process.

A Context-Aware Information Service using FCM Clustering Algorithm and Fuzzy Decision Tree (FCM 클러스터링 알고리즘과 퍼지 결정트리를 이용한 상황인식 정보 서비스)

  • Yang, Seokhwan;Chung, Mokdong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.810-819
    • /
    • 2013
  • FCM (Fuzzy C-Means) clustering algorithm, a typical split-based clustering algorithm, has been successfully applied to the various fields. Nonetheless, the FCM clustering algorithm has some problems, such as high sensitivity to noise and local data, the different clustering result from the intuitive grasp, and the setting of initial round and the number of clusters. To address these problems, in this paper, we determine fuzzy numbers which project the FCM clustering result on the axis with the specific attribute. And we propose a model that the fuzzy numbers apply to FDT (Fuzzy Decision Tree). This model improves the two problems of FCM clustering algorithm such as elevated sensitivity to data, and the difference of the clustering result from the intuitional decision. And also, this paper compares the effect of the proposed model and the result of FCM clustering algorithm through the experiment using real traffic and rainfall data. The experimental results indicate that the proposed model provides more reliable results by the sensitivity relief for data. And we can see that it has improved on the concordance of FCM clustering result with the intuitive expectation.

Fuzzy Technique-based Identification of Close and Distant Clusters in Clustering

  • Lee, Kyung-Mi;Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.165-170
    • /
    • 2011
  • Due to advances in hardware performance, user-friendly interfaces are becoming one of the major concerns in information systems. Linguistic conversation is a very natural way of human communications. Fuzzy techniques have been employed to liaison the discrepancy between the qualitative linguistic terms and quantitative computerized data. This paper deals with linguistic queries using clustering results on data sets, which are intended to retrieve the close clusters or distant clusters from the clustering results. In order to support such queries, a fuzzy technique-based method is proposed. The method introduces distance membership functions, namely, close and distant membership functions which transform the metric distance between two objects into the degree of closeness or farness, respectively. In order to measure the degree of closeness or farness between two clusters, both cluster closeness measure and cluster farness measure which incorporate distance membership function and cluster memberships are considered. For the flexibility of clustering, fuzzy clusters are assumed to be formed. This allows us to linguistically query close or distant clusters by constructing fuzzy relation based on the measures.

On Color Cluster Analysis with Three-dimensional Fuzzy Color Ball

  • Kim, Dae-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.262-267
    • /
    • 2008
  • The focus of this paper is on devising an efficient clustering task for arbitrary color data. In order to tackle this problem, the inherent uncertainty and vagueness of color are represented by a fuzzy color model. By taking a fuzzy approach to color representation, the proposed model makes a soft decision for the vague regions between neighboring colors. A definition on a three-dimensional fuzzy color ball is introduced, and the degree of membership of color is computed by employing a distance measure between a fuzzy color and color data. With the fuzzy color model, a novel fuzzy clustering algorithm for efficient partition of color data is developed.

Comparative Analysis of Learning Methods of Fuzzy Clustering-based Neural Network Pattern Classifier (퍼지 클러스터링기반 신경회로망 패턴 분류기의 학습 방법 비교 분석)

  • Kim, Eun-Hu;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1541-1550
    • /
    • 2016
  • In this paper, we introduce a novel learning methodology of fuzzy clustering-based neural network pattern classifier. Fuzzy clustering-based neural network pattern classifier depicts the patterns of given classes using fuzzy rules and categorizes the patterns on unseen data through fuzzy rules. Least squares estimator(LSE) or weighted least squares estimator(WLSE) is typically used in order to estimate the coefficients of polynomial function, but this study proposes a novel coefficient estimate method which includes advantages of the existing methods. The premise part of fuzzy rule depicts input space as "If" clause of fuzzy rule through fuzzy c-means(FCM) clustering, while the consequent part of fuzzy rule denotes output space through polynomial function such as linear, quadratic and their coefficients are estimated by the proposed local least squares estimator(LLSE)-based learning. In order to evaluate the performance of the proposed pattern classifier, the variety of machine learning data sets are exploited in experiments and through the comparative analysis of performance, it provides that the proposed LLSE-based learning method is preferable when compared with the other learning methods conventionally used in previous literature.

A New Learning Algorithm of Neuro-Fuzzy Modeling Using Self-Constructed Clustering

  • Ryu, Jeong-Woong;Song, Chang-Kyu;Kim, Sung-Suk;Kim, Sung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.95-101
    • /
    • 2005
  • In this paper, we proposed a learning algorithm for the neuro-fuzzy modeling using a learning rule to adapt clustering. The proposed algorithm includes the data partition, assigning the rule into the process of partition, and optimizing the parameters using predetermined threshold value in self-constructing algorithm. In order to improve the clustering, the learning method of neuro-fuzzy model is extended and the learning scheme has been modified such that the learning of overall model is extended based on the error-derivative learning. The effect of the proposed method is presented using simulation compare with previous ones.

Advance Neuro-Fuzzy Modeling Using a New Clustering Algorithm (새로운 클러스터링 알고리듬을 적용한 향상된 뉴로-퍼지 모델링)

  • 김승석;김성수;유정웅
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.536-543
    • /
    • 2004
  • In this paper, we proposed a new method of modeling a neuro-fuzzy system using a hybrid clustering algorithm. The initial parameters and the number of clusters of the proposed system are optimally chosen simultaneously with respect to the process of regression, which is a unique characteristics of the proposed system. The proposed algorithm presented in this work improves the overall performance of the proposed a neuro-fuzzy system by choosing a proper number of clusters adaptively according the characteristics of given data. The process of clustering is performed by deciding on the number of classes, which yields the property of convergence of the system. In experiments, the superiority of the proposed neuro-fuzzy system is demonstrated, especially the process of optimizing parameters and clustering of learning speed.