• Title/Summary/Keyword: fuzzy classification

Search Result 572, Processing Time 0.029 seconds

Fuzzy Classification Using EM Algorithm

  • Lee Sang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.675-677
    • /
    • 2005
  • This study proposes a fuzzy classification using EM algorithm. For cluster validation, this approach iteratively estimates the class-parameters in the fuzzy training for the sample classes and continuously computes the log-likelihood ratio of two consecutive class-numbers. The maximum ratio rule is applied to determine the optimal number of classes.

  • PDF

Design and Evaluation of ANFIS-based Classification Model (ANFIS 기반 분류모형의 설계 및 성능평가)

  • Song, Hee-Seok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.151-165
    • /
    • 2009
  • Fuzzy neural network is an integrated model of artificial neural network and fuzzy system and it has been successfully applied in control and forecasting area. Recently ANFIS(Adaptive Network-based Fuzzy Inference System) has been noticed widely among various fuzzy neural network models because of its outstanding accuracy of control and forecasting area. We design a new classification model based on ANFIS and evaluate it in terms of classification accuracy. We identified ANFIS-based classification model has higher classification accuracy compared to existing classification model, C5.0 decision tree model by comparing their experimental results.

  • PDF

A Study of Improving the Flexibility and Effectiveness of Natural Anguage Understanding Considering Natural Language Classification Methodologies (Machine에 의한 자연 언어 이해의 효과성 및 탄력성 중대를 위한 자연언어 이해 기법과 분류 기법과 연결적 통합 사용에 대한 연구)

  • 이현부
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.1 no.3
    • /
    • pp.20-32
    • /
    • 1991
  • This study seeks a way a way of dealing with unformatted natural language considering fuzzy set theory. The goal of the study is to establish a framework of an effective language understanding system that is linked to language classification system This study has found that languate understanding is strongly influenced by the language classification. The understanding of language. This study shows that the precision of language classification depends upon the way of how the language is classified in advance. In this study, a fuzzy logic was used to improve the precision of language classification. It was considered that the fuzzy logic might be albe to distinctively classify nuatural language texts into pretinent homogenious groups where contents of the language were identical. Accordingly, in the study, it was expected that classification of language were precisely classified by the fuzzy logic. An experimentalsystems was designed to evaluate the performane of a natural language understanding system that was connected to a fuzzy language classification system. Finally, the experiment suggests that a successful language understanding should require an real time interaction between mem andmachine fuzzy provious language classification.

  • PDF

Adaptive Classification of Subimages by the Fuzzy System for Image Data Compression (퍼지시스템에 의한 부영상의 적응분류와 영상데이타 압축에의 적용)

  • Kong, Seong-Gon
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1193-1205
    • /
    • 1994
  • This paper presents a fuzzy system that adaptively classifies subimages to four classes according to image activity distribution. In adaptive transform image coding, subimage classification improves the compression performance by assigning different bit maps to different classes. A conventional classification method sorts subimages by their AC energy and divides them to classes with equal number of subimages. The fuzzy system provides more flexible classification to natural images with various distribution of image details than does the conventional method. Clustering of training data in the input-output product space generated the fuzzy rules for subimage classification. The fuzzy system of small number of fuzzy rules successfully classified subimages to improve the compression performance of the transform image coding without sorting of AC energies.

Fuzzy SVM for Multi-Class Classification

  • Na, Eun-Young;Hong, Dug-Hun;Hwang, Chang-Ha
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.123-123
    • /
    • 2003
  • More elaborated methods allowing the usage of binary classifiers for the resolution of multi-class classification problems are briefly presented. This way of using FSVC to learn a K-class classification problem consists in choosing the maximum applied to the outputs of K FSVC solving a one-per-class decomposition of the general problem.

  • PDF

The aplication of fuzzy classification methods to spatial analysis (공간분석을 위한 퍼지분류의 이론적 배경과 적용에 관한 연구 - 경상남도 邑級以上 도시의 기능분류를 중심으로 -)

  • ;Jung, In-Chul
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.3
    • /
    • pp.296-310
    • /
    • 1995
  • Classification of spatial units into meaningful sets is an important procedure in spatial analysis. It is crucial in characterizing and identifying spatial structures. But traditional classification methods such as cluster analysis require an exact database and impose a clear-cut boundary between classes. Scrutiny of realistic classification problems, however, reveals that available infermation may be vague and that the boundary may be ambiguous. The weakness of conventional methods is that they fail to capture the fuzzy data and the transition between classes. Fuzzy subsets theory is useful for solving these problems. This paper aims to come to the understanding of theoretical foundations of fuzzy spatial analysis, and to find the characteristics of fuzzy classification methods. It attempts to do so through the literature review and the case study of urban classification of the Cities and Eups of Kyung-Nam Province. The main findings are summarized as follows: 1. Following Dubois and Prade, fuzzy information has an imprecise and/or uncertain evaluation. In geography, fuzzy informations about spatial organization, geographical space perception and human behavior are frequent. But the researcher limits his work to numerical data processing and he does not consider spatial fringe. Fuzzy spatial analysis makes it possible to include the interface of groups in classification. 2. Fuzzy numerical taxonomic method is settled by Deloche, Tranquis, Ponsard and Leung. Depending on the data and the method employed, groups derived may be mutually exclusive or they may overlap to a certain degree. Classification pattern can be derived for each degree of similarity/distance $\alpha$. By takina the values of $\alpha$ in ascending or descending order, the hierarchical classification is obtained. 3. Kyung-Nam Cities and Eups were classified by fuzzy discrete classification, fuzzy conjoint classification and cluster analysis according to the ratio of number of persons employed in industries. As a result, they were divided into several groups which had homogeneous characteristies. Fuzzy discrete classification and cluste-analysis give clear-cut boundary, but fuzzy conjoint classification delimit the edges and cores of urban classification. 4. The results of different methods are varied. But each method contributes to the revealing the transparence of spatial structure. Through the result of three kinds of classification, Chung-mu city which has special characteristics and the group of Industrial cities composed by Changwon, Ulsan, Masan, Chinhai, Kimhai, Yangsan, Ungsang, Changsungpo and Shinhyun are evident in common. Even though the appraisal of the fuzzy classification methods, this framework appears to be more realistic and flexible in preserving information pertinent to urban classification.

  • PDF

Ontology-based Fuzzy Classifier for Pattern Classification (패턴분류를 위한 온톨로지 기반 퍼지 분류기)

  • Lee, In-K.;Son, Chang-S.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.814-820
    • /
    • 2008
  • Recently, researches on ontology-based pattern classification have been tried out in many fields. However, in most of the researches, the ontology which represents the knowledge about pattern classification is just referred during the processes of the pattern classification. In this paper, we propose ontology-based fuzzy classifier for pattern classification which is extended from the fuzzy rule-based classifier In order to realize the proposed classifier, we construct an ontology by conceptualizing the method of fuzzy rule-based pattern classification and generate ontology inference rules for pattern classification. Lastly, we show the validity o) the proposed classifier through the experiment of pattern classification on the Fisher's IRIS dataset.

A Construction of Fuzzy Model for Data Mining (데이터 마이닝을 위한 퍼지 모델 동정)

  • Kim, Do-Wan;Park, Jin-Bae;Kim, Jung-Chan;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.191-194
    • /
    • 2002
  • In this paper, a new GA-based methodology with information granules is suggested for construction of the fuzzy classifier. We deal with the selection of the fuzzy region as well as two major classification problems-the feature selection and the pattern classification. The proposed method consists of three steps: the selection of the fuzzy region, the construction of the fuzzy sets, and the tuning of the fuzzy rules. The genetic algorithms (GAs) are applied to the development of the information granules so as to decide the satisfactory fuzzy regions. Finally, the GAs are also applied to the tuning procedure of the fuzzy rules in terms of the management of the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes). To show the effectiveness of the proposed method, an example-the classification of the Iris data, is provided.

Similarity Classifier based on Schweizer & Sklars t-norms

  • Luukka, P.;Sampo, J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1053-1056
    • /
    • 2004
  • In this article we have applied Schweizer & Sklars t-norm based similarity measures to classification task. We will compare results to fuzzy similarity measure based classification and show that sometimes better results can be found by using these measures than fuzzy similarity measure. We will also show that classification results are not so sensitive to p values with Schweizer & Sklars measures than when fuzzy similarity is used. This is quite important when one does not have luxury of tuning these kind of parameters but needs good classification results fast.

  • PDF

Classification Using Convex Clustering Neural Network (볼록 군집 신경 회로망을 이용한 분류)

  • 김영준;박용진
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.3
    • /
    • pp.114-122
    • /
    • 2000
  • This paper proposes a classification method using an amorphous Prototype to minimize classification error caused by such fixed-Prototype-based methods as Fuzzy C-Means, Nearest Neighborring Classification, FMMCNN, and Fuzzy-ART. For this method, a new fuzzy neural network is introduced, in which a convex polytope is generated or adaptively reshaped to classify the given datum into a proper group. Thus, this method contains a function to classify sequential data set. To show the validity of this method, various numerical experiments including comparison results with FMMCNN are presented

  • PDF