• 제목/요약/키워드: fuzzy C-means clustering algorithm

검색결과 206건 처리시간 0.023초

커널을 이용한 전역 클러스터링의 비선형화 (A Non-linear Variant of Global Clustering Using Kernel Methods)

  • 허경용;김성훈;우영운
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권4호
    • /
    • pp.11-18
    • /
    • 2010
  • Fuzzy c-means(FCM)는 퍼지 집합을 응용한 간단하지만 효율적인 클러스터링 방법 중 하나이다. FCM은 여러 응용 분야에서 성공적으로 활용되어 왔지만, 초기화와 잡음에 민감하고 볼록한 형태의 클러스터들만 다룰 수 있는 문제점이 있다. 이 논문에서는 이러한 FCM의 문제점을 해결하기 위해 전역 클러스터링(global clustering) 기법과 커널 클러스터링(kernel clustering) 기법을 결합하여 새로운 비선형 클러스터링 기법인 커널 전역 FCM(kernel global fuzzy c-means, KG-FCM)을 제안한다. 전역 클러스터링은 클러스터링의 초기화를 위한 방법 중 하나로, 순차적으로 클러스터를 하나씩 추가함으로써 초기화에 민감한 FCM의 한계를 극복할 수 있도록 해준다. FCM의 잡음 민감성과 볼록한 클러스터들만 다룰 수 있는 한계를 극복하기 위한 방법은 여러 가지가 있으며 커널 클러스터링이 그 중 하나이다. 커널 클러스터링은 사용하는 커널을 바꿈으로써 쉽게 확장이 가능하므로 이 논문에서는 커널 클러스터링을 사용하였다. 두 방법을 결합함으로써 제안한 방법은 위에서 언급한 문제점들을 해결할 수 있으며, 이는 가상 및 실제 데이터를 이용한 실험 결과를 통해 확인할 수 있다.

낮은 신호 대 잡음비 환경에서의 퍼지 소속도 천이 C-means 클러스터링을 이용한 음성구간 검출 알고리즘 (Voice Activity Detection Algorithm using Fuzzy Membership Shifted C-means Clustering in Low SNR Environment)

  • 이기현;이윤정;조진호;김명남
    • 한국멀티미디어학회논문지
    • /
    • 제17권3호
    • /
    • pp.312-323
    • /
    • 2014
  • 음성구간 검출은 음성과 잡음이 섞인 신호에서 음성과 잡음이 섞인 신호에서 음성구간을 찾는 과정으로 잡음제거나 음성 향상을 위한 신호처리에서 매우 중요한 과정이다. 지금까지 음성구간 검출에 관한 많은 연구가 있었지만, 낮은 신호 대 잡음비 환경에서 문장형태의 음성신호에 대해서는 좋은 성능을 보이지 못하였다. 본 논문에서는 신호의 엔트로피를 이용한 초기 VAD과정을 거친 후, 퍼지 소속도 천이 c-means 클러스터링 방법을 이용해 주 VAD과정을 거치는 새로운 VAD알고리즘을 제안한다. 제안한 알고리즘의 성능을 비교 평가하기 위하여 백색잡음의 다양한 신호 대 잡음비 환경에서 실험을 수행하였으며 실험결과, 제안한 방법의 우수한 성능을 확인할 수 있었다.

An Improved Hybrid Canopy-Fuzzy C-Means Clustering Algorithm Based on MapReduce Model

  • Dai, Wei;Yu, Changjun;Jiang, Zilong
    • Journal of Computing Science and Engineering
    • /
    • 제10권1호
    • /
    • pp.1-8
    • /
    • 2016
  • The fuzzy c-means (FCM) is a frequently utilized algorithm at present. Yet, the clustering quality and convergence rate of FCM are determined by the initial cluster centers, and so an improved FCM algorithm based on canopy cluster concept to quickly analyze the dataset has been proposed. Taking advantage of the canopy algorithm for its rapid acquisition of cluster centers, this algorithm regards the cluster results of canopy as the input. In this way, the convergence rate of the FCM algorithm is accelerated. Meanwhile, the MapReduce scheme of the proposed FCM algorithm is designed in a cloud environment. Experimental results demonstrate the hybrid canopy-FCM clustering algorithm processed by MapReduce be endowed with better clustering quality and higher operation speed.

Regularization을 이용한 Possibilistic Fuzzy C-means의 확장 (An Extension of Possibilistic Fuzzy C-means using Regularization)

  • 허경용;남궁영환;김성훈
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권1호
    • /
    • pp.43-50
    • /
    • 2010
  • Fuzzy c-means(FCM)와 possibilistic c-means(PCM)는 퍼지 클러스터링 영역에서 대표적인 두 가지 방법으로 많은 패턴 인식 문제들에 성공적으로 활용되어져 왔다. 하지만 이들 방법 역시 잡음 민감성과 중첩 클러스터 문제를 가지고 있다. 이들 문제점을 극복하기 위해, 최근 두 방법을 결합하려는 시도가 있어왔고, possibilistic fuzzy c-means(PFCM)는 FCM과 PCM을 목적 함수 단계에서 통합함으로써 두 방법이 가지는 문제점을 완화시키는 성공적인 결과를 보여주었다. 이 논문에서는 PFCM에 regularization을 도입함으로써 PFCM의 잡음 민감성을 한층 더 줄여줄 수 있는 향상된 PFCM을 소개한다. Regularization은 해공간을 평탄화 함으로써 잡음의 영향을 줄이는 대표적인 방법 중 하나이다. 제안한 방법은 PFCM의 장점과 더불어 regularization에 의해 잡음의 영향을 더욱 줄일 수 있으며, 이는 실험을 통해 확인할 수 있다.

Incremental Fuzzy Clustering Based on a Fuzzy Scatter Matrix

  • Liu, Yongli;Wang, Hengda;Duan, Tianyi;Chen, Jingli;Chao, Hao
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.359-373
    • /
    • 2019
  • For clustering large-scale data, which cannot be loaded into memory entirely, incremental clustering algorithms are very popular. Usually, these algorithms only concern the within-cluster compactness and ignore the between-cluster separation. In this paper, we propose two incremental fuzzy compactness and separation (FCS) clustering algorithms, Single-Pass FCS (SPFCS) and Online FCS (OFCS), based on a fuzzy scatter matrix. Firstly, we introduce two incremental clustering methods called single-pass and online fuzzy C-means algorithms. Then, we combine these two methods separately with the weighted fuzzy C-means algorithm, so that they can be applied to the FCS algorithm. Afterwards, we optimize the within-cluster matrix and betweencluster matrix simultaneously to obtain the minimum within-cluster distance and maximum between-cluster distance. Finally, large-scale datasets can be well clustered within limited memory. We implemented experiments on some artificial datasets and real datasets separately. And experimental results show that, compared with SPFCM and OFCM, our SPFCS and OFCS are more robust to the value of fuzzy index m and noise.

비선형 공정을 위한 FCM 클러스터링 알고리즘 기반 퍼지 추론 시스템 (Fuzzy Inference Systems Based on FCM Clustering Algorithm for Nonlinear Process)

  • 박건준;강형길;김용갑
    • 한국정보전자통신기술학회논문지
    • /
    • 제5권4호
    • /
    • pp.224-231
    • /
    • 2012
  • 본 논문에서는 비선형 공정을 퍼지 모델링하기 위해 FCM 클러스터링 알고리즘을 기반으로 하는 퍼지 추론 시스템을 소개한다. 비선형 공정에 대한 퍼지 규칙의 생성은 일반적으로 차원이 증가할수록 규칙의 수가 지수적으로 증가하는 문제를 가지고 있다. 이를 해결하기 위해, FCM 클러스터링 알고리즘을 이용하여 입력 공간을 분산 형태로 분할함으로써 퍼지 모델의 규칙을 생성한다. 퍼지 규칙의 전반부 파라미터는 FCM 클러스터링 알고리즘에 의한 소속행렬로 결정된다. 퍼지 규칙의 후반부는 다항식 함수의 형태로 표현되며, 각 규칙의 후반부 파라미터들은 표준 최소자승법에 의해 동정된다. 마지막으로, 비선형 공정의 특성 및 성능을 평가하기 위하여 비선형 공정으로는 널리 이용되는 데이터를 이용한다.

퍼지 클러스터링 기반의 국소평가 유전자 알고리즘 (Partially Evaluated Genetic Algorithm based on Fuzzy Clustering)

  • 유시호;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권9호
    • /
    • pp.1246-1257
    • /
    • 2004
  • 유전자 알고리즘은 원하는 최적해를 찾기 위해서 개체 집단의 크기를 가능한 크게 유지하여야 한다. 하지만 실제 문제에서 개체의 적합도를 평가하는 것이 어려운 경우가 많기 때문에 큰 집단의 모든 개체에 대하여 적합도를 평가하는 것은 많은 시간과 비용을 요구한다. 이에 본 논문에서는 집단의 크기를 크게 유지하되 클러스터링에 의해 대표 개체만을 평가함으로써 효율을 높이는 퍼지 글러스터링 기반의 국소 평가 유전자 알고리즘을 제안한다. 나머지 개체들은 대표 개체로부터 간접적으로 적합도를 분배받는다. 다수의 집단에 소속되는 개체들의 경우, 하드 클러스터링 방법으로는 정확한 적합도 분배를 하기 어렵기 때문에 퍼지 c-means 알고리즘을 사용하였고, 클러스터 결과인 퍼지 소속 행렬에 의해 적합도를 배분하였다. 9개의 벤치마크 적합도 함수에 대하여 6가지 하드 클러스터링 알고리즘을 적용한 유클리디안 거리와 피어슨 상관계수에 의한 적합도 배분 방법과 본 논문에서 제안하는 방법을 비교 실천한 결과, 제안한 방법의 우수한 성능을 확인할 수 있었다.

Mobile User Interface Pattern Clustering Using Improved Semi-Supervised Kernel Fuzzy Clustering Method

  • Jia, Wei;Hua, Qingyi;Zhang, Minjun;Chen, Rui;Ji, Xiang;Wang, Bo
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.986-1016
    • /
    • 2019
  • Mobile user interface pattern (MUIP) is a kind of structured representation of interaction design knowledge. Several studies have suggested that MUIPs are a proven solution for recurring mobile interface design problems. To facilitate MUIP selection, an effective clustering method is required to discover hidden knowledge of pattern data set. In this paper, we employ the semi-supervised kernel fuzzy c-means clustering (SSKFCM) method to cluster MUIP data. In order to improve the performance of clustering, clustering parameters are optimized by utilizing the global optimization capability of particle swarm optimization (PSO) algorithm. Since the PSO algorithm is easily trapped in local optima, a novel PSO algorithm is presented in this paper. It combines an improved intuitionistic fuzzy entropy measure and a new population search strategy to enhance the population search capability and accelerate the convergence speed. Experimental results show the effectiveness and superiority of the proposed clustering method.

영상 분할을 위한 개선된 공간적 퍼지 클러스터링 알고리즘 (An Enhanced Spatial Fuzzy C-Means Algorithm for Image Segmentation)

  • 퉁 투룽;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.49-57
    • /
    • 2012
  • FCM(fuzzy c-means)은 일반적으로 영상 분할에서 좋은 성능을 보인다. 하지만 공간 정보를 사용하지 않는 일반적인 FCM 알고리즘은 낮은 대비의 영상, 경계선이 뚜렷하지 않은 영상, 잡음이 포함된 영상의 분할에는 좋지 않은 성능을 보인다. 이와 같은 문제를 해결하기 위해 본 논문에서는 3x3 크기의 윈도우를 이용하여 윈도우 내의 중심 픽셀과 주변 픽셀간의 거리 정보를 소속 함수에 추가한 개선된 공간적 퍼지 클러스터링 알고리즘을 제안한다. 본 논문에서는 분할 계수, 분할 엔트로피, Xie-Bdni 함수와 같은 클러스터링 검증 함수를 이용하여 FCM 기반의 다양한 클러스터링 알고리즘과 제안한 알고리즘과의 성능을 비교하였다. 성능 평가 결과 제안한 알고리즘이 기존의 FCM기반의 클러스터링 알고리즘보다 클러스터링 검증 함수에서 성능이 우수함을 확인 할 수 있었다.

GA기반 TSK 퍼지 분류기의 설계 및 응용 (The Design of GA-based TSK Fuzzy Classifier and Its application)

  • 곽근창;김승석;유정웅;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.233-236
    • /
    • 2001
  • In this paper, we propose a TSK-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy C-Means) clustering and hybrid GA(genetic algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive Genetic Algorithm) and RLSE(Recursive Least Square Estimate). we applied the proposed method to Iris data classification problems and obtained a better performance than previous works.

  • PDF