비디오 분할은 비디오 질의 시스템을 만드는 첫 번째 단계로서 각 샷이 같은 내용을 가지는 프레임들의 순서를 표현하는 샷들에 대한 비디오 시퀀스 분할을 목적으로 한다. 샷 전환의 형태는 급진적인 샷 전환과 점진적인 샷 전환으로 구분된다. 샷 전환 검출 접근의 중요한 문제는 샷 전환 검출의 실행을 결정하는 정확한 경계값을 구체화하기 어렵다는 것이다. 또한 클러스터 접근에서는 클러스터의 올바를 수를 찾기가 어렵다. 이러한 문제점들을 개선하고자 컬러-X$^2$ 명도 히스토그램 기반 퍼지 c-means 클러스터링 방법을 이용하여 하이브리드 형태의 샷 전환 검출 방법을 제안 하였다.
In this paper we propose the Multi-FNN (Fuzzy-Neural Networks) for optimal identification modeling of complex system. The proposed Multi-FNNs is based on a concept of FNNs and exploit linear inference being treated as generic inference mechanisms. In the networks learning, backpropagation(BP) algorithm of neural networks is used to updata the parameters of the network in order to control of nonlinear process with complexity and uncertainty of data, proposed model use a HCM(Hard C-Means)clustering algorithm which carry out the input-output dat a preprocessing function and Genetic Algorithm which carry out optimization of model The HCM clustering method is utilized to determine the structure of Multi-FNNs. The parameters of Multi-FNN model such as apexes of membership function, learning rates, and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization abilities of the model. NOx emission process data of gas turbine power plant is simulated in order to confirm the efficiency and feasibility of the proposed approach in this paper.
본 연구에서는 퍼지 RBFNNs과 증분형 주성분 분석법으로 실현된 숫자인식 시스템의 설계를 소개한다. 주성분 분석법은 차원축소를 위해 사용되는 알고리즘으로 학습데이터의 차원 수가 고차원이거나 데이터의 양이 많을 때 특징 추출을 위한 많은 계산 시간을 필요로 한다. 따라서 고차원 데이터의 효율적인 차원축소와 점진적인 학습을 위해 증분형 주성분분석법을 적용하는 방법을 제안한다. 방사형 기저함수 신경회로망의 구조는 조건부, 결론부, 추론부의 3가지 기능적 모듈로서 구분이 가능하다. 조건부에서는 FCM 클러스터링 알고리즘의 도움으로 실현된 퍼지 클러스터링의 사용으로 입력 공간을 분할한다. 또한 가우시안 함수 대신 FCM(Fuzzy C-Means)클러스터링 알고리즘의 멤버쉽 값을 사용함으로써 입력 데이터의 특성을 좀 더 잘 반영할 수 있도록 개선하였으며, 결론부에서 연결가중치는 상수항에서 일차식과 이차식, 그리고 변형된 이차식과 같은 다항식의 형태로 확장하여 사용한다. 실험 결과는 공인 숫자 데이터인 MNIST 필기체 숫자 데이터를 사용하여 제안된 숫자 인식 시스템의 효율성을 다른 연구와의 비교를 통해 입증한다.
본 논문에서는 다차원 문제로 인하여 발생하는 패턴 분류 성능의 저하를 방지 하여 퍼지 패턴 분류기의 성능을 개선하기 위하여 다수의 Feature들 중에서 패턴 분류 성능 향상에 기여하는 Feature를 선택하기 위한 새로운 Feature Selection 방법을 제안 한다. 새로운 Feature Selection 방법은 각각의 Feature 들을 퍼지 클러스터링 기법을 이용하여 클러스터링 한 후 각 클러스터가 임의의 class에 속하는 정도를 계산하고 얻어진 값을 이용하여 해당 feature 가 fuzzy pattern classifier에 적용될 경우 패턴 분류 성능 개선 가능성을 평가한다. 평가된 성능 개선 가능성을 기반으로 이미 정해진 개수만큼의 Feature를 선택하는 Feature Selection을 수행한다. 본 논문에서는 제안된 방법의 성능을 평가, 비교하기 위하여 다수의 머신 러닝 데이터 집합에 적용한다.
본 논문은 효율적인 음악 데이터의 분류를 위한 방법으로 분산커널 기반의 퍼지 c-평균을 이용한 분류기 모델을 제안한다. 분산 커널 기반의 퍼지 c-평균은 주어진 오디오 데이터에서 추출된 특징벡터의 평균과 공분산 정보를 동시에 이용하여 기존의 평균값만을 사용하는 방식에 비해 성능을 월등히 향상시킬 수 있는 장점이 있다. 사용된 방식은 확률적 분포로 주어지는 데이터 사이의 거리를 분산거리척도로 측정하고, 복잡한 분류 경계를 단순화 시키는데 효율적인 커널 개념을 사용함으로서 분류의 정확도를 극대화 시킬 수 있는 장점이 있다. 제안하는 분류기의 성능을 평가하기 위하여 고전음악, 컨트리음악, 힙합, 재즈의 4개의 장르 음악데이터를 총 1200개 수집하여 실험을 진행하였다. 실험의 결과 제안된 분산커널 기반의 퍼지 c-평균을 이용하는 분류기는 기존의 방식과 비교하여 분류정확도에서 평균적으로 17.73%-21.84%의 성능향상을 보여준다.
WLAN 환경하에서 알고리즘 기반의 패턴 매칭을 위해 training 단계에서는 여러 개의 AP에서 신호 잡음비의 특성값을 데이터베이스에 만들어 활용하고 estimation 단계에서는 단말기(MU)의 2차원 좌표값을 단말기로부터 새롭게 얻은 SNR과 데이터베이스에 저장된 fingerprint을 비교함으로써 추정한다. Fingerprinting 방식에서 KNN은 WLAN 기반 실내 측위에 가장 많이 적용되고 있지만 KNN의 성능은 k 개의 이웃 수와 RP의 수에 따라 민감하다. 논문에서는 KNN 성능을 향상시키기 위해 PFCM 군집화를 적용한 KNN과 PFCM을 혼합한 알고리즘을 제안하였다. 제안한 알고리즘은 신호잡음비 데이터를 KNN 방법에 적용하여 k개의 RP을 선택한 후 선택된 RP의 신호잡음비를 PFCM에 적용하여 k개의 RP를 군집하여 분류한다. 실험 결과에서는 위치 오차가 2m 이내에서 KNN/IFCM 알고리즘이 KNN, KNN/FCM, KNN/PFCM 알고리즘보다 성능이 우수하다.
퍼지모델링은 일반적으로 주어진 데이터를 이용하고 퍼지규칙은 입력변수를 선정하고 각 입력변수에 대한 입력공간을 분할함으로써 입력변수 및 공간분할에 의해 확립된다. 퍼지규칙의 전반부는 입력변수, 공간분할 수 및 소속 함수를 선정하고 본 논문에서 후반부는 선형추론 및 변형된 이차식에 의해 다항식함수의 형태로 나타낸다. 전반부 파라미터의 동정은 입출력 데이터의 최소값과 최대값을 이용하는 최소-최대 방법 및 입출력 데이터를 군집으로 형성하는 C-Means 클러스터링 알고리즘을 사용하여 입력공간을 분할한다. 각 규칙의 후반부 파라미터들, 즉 다항식의 계수들의 동정은 표준최소자승법에 의해 수행된다. 본 논문에서 전반부 소속 함수는 사다리꼴형 멤버쉽 함수를 사용하여 입력공간을 분할하고 비선형공정에서 널리 이용되는 가스로데이터를 사용하여 성능을 평가한다.
무선 네트워크 기반 실내 측위는 측위를 위한 특수 장비를 필요로 하지 않고, Fingerprinting 방식은 무선 네트워크 기반 측위를 위한 기술 중에서 가장 정확도가 높기 때문에 무선 네트워크 Fingerprinting 방식이 가장 적당한 실내 측위 방법이다. Fingerprinting 방식에서 KNN은 WLAN 기반 실내 측위에 가장 많이 적용되고 있지만 KNN의 성능은k개의 이웃 수와 RP의 수에 따라 민감하다. 논문에서는 KNN 성능을 향상시키기 위해 PFCM 군집화를 적용한 KNN과 PFCM을 혼합한 알고리즘을 제안하였다. 제안한 알고리즘은 신호잡음비 데이터를 KNN 방법에 적용하여k개의 RP을 선택한 후 선택된 RP의 신호잡음비를 PFCM에 적용하여k개의 RP를 군집하여 분류한다. 실험 결과에서는 위치 오차가 2m 이내에서 KNN/PFCM 알고리즘이 KNN과 KNN/FCM 알고리즘보다 성능이 우수하다.
텍스처 이미지가 다양한 산업 애플리케이션 분야에 널리 사용됨에 따라, 이러한 이미지들의 저작권 보호는 중요한 이슈가 되어왔다. 이러한 이유로, 본 논문은 이미지에 내재한 텍스처 특성을 이용한 칼라 텍스처 이미지 워터마킹 알고리즘을 제안한다. 제안한 알고리즘은 퍼지 클러스터링을 위한 입력으로써 그레이 레벨 동시발생 행렬의 에너지와 동질성 특징을 사용하여 워터마크를 삽입하기 위한 적당한 블록들을 선택한다. 워터마크를 삽입하기 위해 먼저 선택된 블록들에 이산 웨이블릿 변환을 수행하고, 이산 웨이블릿 변환의 서버밴드들의 하나를 선택한다. 그런후에 이 워터마크를 중간 대역의 이산 코사인 변환 계수에 삽입한다. 또한, 본 논문은 워터마크 삽입 후 비인지성과 다양한 형태의 워커마킹 공격에 대해 강인성이 뛰어난 이득 계수들과 이산 웨이블릿 변환의 서버밴드들의 효과를 탐색한다. 모의실험 결과, 제안한 알고리즘은 이득 계수가 42이고 HH 밴드에 워터마크를 삽입하였을 때 높은 PSNR 값 (47.66 dB to 48.04 dB) 및 낮은 M-SVD 값 (8.84 to 15.6)을 얻었다. 또한 제안한 알고리즘은 노이즈 첨가, 필터링, 잘라내기 및 JPEG 압축과 같은 다양한 이미지 처리 공격에서도 높은 상관 값 (0.7193 to 1)을 보였다.
This study is developed vehicle information detector using loop and piezo sensors. This study would analyze the over all problems concerning our road conditions, environmental matters and unique features of our traffic matters; moreover, with these it would develope the hardware, software, car classification algorithm applied by artificial intelligence and traffic monitoring program which can be easily fixed. This can be divided into traffic detecting algorithm and car classification algorithm. Especially, we have developed the car classification algorithm used by C-means Fuzzy Clustering method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.