• Title/Summary/Keyword: fuzzy - controller

Search Result 2,730, Processing Time 0.036 seconds

PD+I-type fuzzy controller using Simplified Indirect Inference Method

  • Kim, Ji-Hoon;Jeon, Hae-Jin;Chun, Kyung-Han;Park, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.179.5-179
    • /
    • 2001
  • Generally, while PD-type fuzzy controller has good performance in transient period, it has uniform steady state error of response. To improve limitations of PD-type fuzzy controller, we propose a new fuzzy controller to improve the performance of transient response and to eliminate the steady state error of response. In this paper, PD-type fuzzy controller is used a simplified indirect inference method(SIIM). When the SIIM is applied, the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. The outputs of this controller are the output calculated by PD-type fuzzy controller and the accumulated error scaling factor. Here, the accumulated error scaling factor is adjusted by fuzzy rule according to the system state variables. To show the usefulness of the proposed controller, it is applied to 0-type 2nd-order linear system.

  • PDF

Tracking Control for Mobile Robot Based on Fuzzy Systems (퍼지 시스템을 이용한 이동로봇의 궤적제어)

  • 박재훼;이만형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.466-472
    • /
    • 2003
  • This paper describes a tracking control for the mobile robot based on fuzzy systems. Since the mobile robot has the nonholonomic constraints, these constraints should be considered to design a tracking controller for the mobile robot. One of the well-known tracking controllers for the mobile robot is the back-stepping controller. The conventional back-stepping controller includes the dynamics and kinematics of the mobile robot. The conventional back-stepping controller is affected by the derived velocity reference by a kinematic controller. To improve the performance of the conventional back-stepping controller, this paper uses the fuzzy systems known as the nonlinear controller. The new velocity reference for the back-stepping controller is derived through the fuzzy inference. Fuzzy rules are selected for gains of the kinematic controller. The produced velocity reference has properly considered the varying reference trajectories. Simulation results show that the proposed controller is more robust than the conventional back-stepping controller.

Control of the Washing Machineos Motor by the GA-Fuzzy Algorithm (GA-Fuzzy Algorithm에 의한 세탁기 모터의 제어)

  • 이재봉;김지현;박윤서;선희복
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.3-12
    • /
    • 1995
  • A controller utilizing fuzzy logic is developed to control the speed of a motor in a washing machine by choosing an appropriate phase. Due to the hardship imposed on obtaining a result from a relation established for inputs, present speed and present rate of speed, and ouput, a phase, of the system that can be tested against an experimental result, it is impossible to apply a genetic algorithm to fine-tune the fuzzy logic controller. To avoid this difficulty, a proper assumption that the parameters of an if-part of a primary fuzzy logic controller have a functional relationship with an error between computed values and experimental ones in made. Setting up of a fuzzy relationship between the parameters and the errors is then achieved through experimentally obtained data. Genetic Algorithm is then applied to this secondary fuzzy logic controller to verify the fuzzy logic. In the verification process, the primary fuzzy logic controller is used in obtaining experimental results. In this way the kind of difficulty in obtaining enough experimental values used to verify the fuzzy logic with genetic algorithm is gotten around. Selection of the parameters that would produce the least error when using the secondary fuzzy logic controller is done with applying genetic algorithm to the then-part of the controller. In doing so the optimal values for the parameters of the if-part of the primary fuzzy logic controller are assumed to be contained. The experimental result presented in the paper validates the assumption.

  • PDF

Rough Fuzzy Control of SVC for Power System Stability Enhancement

  • Mishra, Yateendra;Mishra, Sukumar;Dong, Zhao Yang
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.337-345
    • /
    • 2008
  • This paper presents a new approach to the design of a rough fuzzy controller for the control loop of the SVC (static VAR system) in a two area power system for stability enhancement with particular emphasis on providing effective damping for oscillatory instabilities. The performances of the rough fuzzy and the conventional fuzzy controller are compared with that of the conventional PI controller for a variety of transient disturbances, highlighting the effectiveness of the rough fuzzy controller in damping the inter-area oscillations. The effect of the rough fuzzy controller in improving the CCT (critical clearing time) of the two area system is elaborated in this paper as well.

Adaptive Fuzzy Control for High Performance Speed Controller in PMSM Drive (PMSM 드라이브의 고성능 속도제어를 위한 적응 퍼지제어기)

  • Chung, Dong-Hwa;Lee, Jung-Chul;Lee, Hong-Gyun;Jung, Tack-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.79-81
    • /
    • 2002
  • This paper develops a adaptive fuzzy controller based fuzzy logic control for high performance speed controller in permanent magnet synchronous motor(PMSM) drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed adaptive fuzzy controller is confirmed by performance results for PMSM drive system.

  • PDF

The Design of Fuzzy Controller by Means of Genetic Optimization and Estimation Algorithms

  • Oh, Sung-Kwun;Rho, Seok-Beom
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.17-26
    • /
    • 2002
  • In this paper, a new design methodology of the fuzzy controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors. The design procedure is based on evolutionary computing (more specifically, a genetic algorithm) and estimation algorithm to adjust and estimate scaling factors respectively. The tuning of the soiling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as HCM (Hard C-Means) and Neuro-Fuzzy model[7]. The validity and effectiveness of the proposed estimation algorithm for the fuzzy controller are demonstrated by the inverted pendulum system.

  • PDF

A Tracking Control of the Hydraulic Servo System Using the Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 유압서보시스뎀의 추적제어)

  • 박근석;임준영;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.228-228
    • /
    • 2000
  • To deal with non-linearities and time-varying characteristics of hydraulic systems, in this paper, the neuro-fuzzy controller has been introduced. This controller does not require an accurate mathematical model for the nonlinear factor. In order to solve general fuzzy inference problems, the input membership function and fuzzy reasoning rules are used for determining the controller Parameters. These parameters are determined by using the learning algorithm. The control performance of the neuro-fuzzy controller is obtained through a series of experiments for the various types of input while applying disturbances to the cylinder. .and performance of this controller was compared with that of PID, PD controller. As a experimental result, it can be proven that the position tracking performance of the neuro-fuzzy is better than that of PID and PD controller.

  • PDF

A Study on a Neuro-Fuzzy Controller Design (뉴로-퍼지 제어기 설계 연구)

  • Im, Jeong-Heum;Chung, Tae-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2120-2122
    • /
    • 2002
  • There are several types of control systems that use fuzzy logic controller as a essential system component. The majority of research work on fuzzy PID controller focuses on the conventional two-input PI or PD type controller. However, fuzzy PID controller design is a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. In this paper we combined conventional PI type and PD type fuzzy controller and set the initial parameters of this controller from the conventional PID controller gains obtained by Ziegler-Nichols tuning or other coarse tuning methods. After that, by replacing some of these parameters with sing1e neurons and making them to be adjusted by back-propagation learning algorithm we designed a neuro-fuzzy controller which showed good performance characteristics in both computer simulation and actual application.

  • PDF

The Design of Fuzzy P+ID Controller for Brushless DC Motor Speed Control (BLDC 전동기의 속도 제어를 위한 퍼지 P+ID 제어기 설계)

  • Kim, Young-Sik;Kim, Sung-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.823-829
    • /
    • 2006
  • In this paper presents approaches to the design of a hybrid fuzzy logic proportional plus conventional integral- derivative(fuzzy P+ID) controller in an incremental form. This controller is constructed by using an incremental fuzzy logic controller in place of the proportional term in a conventional PID controller. The PID type controller has been widely used in industrial application due to its simply control structure, easy of design, and inexpensive cost. However, control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. This paper presents a hybrid fuzzy logic proportional plus conventional integral derivative controller In comparison with a conventional PID controller, only one additional parameter has to be adjusted to tune the Fuzzy P+ID controller. In this case, the stability of a system remains unchanged after the PID controller is replaced by the Fuzzy P+ID controller without modifying the original controller parameters. Finally, the proposed hybrid Fuzzy P+ID controller is applied to BLDC motor drive. Simulation results demonstrated that the control performance of the proposed controller is better than that of the conventional controller.

  • PDF

The Design of a Fuzzy Adaptive Controller for the Process Control (공정제어를 위한 퍼지 적응제어기의 설계)

  • Lee Bong Kuk
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.7
    • /
    • pp.31-41
    • /
    • 1993
  • In this paper, a fuzzy adaptive controller is proposed for the process with large delay time and unmodelled dynamics. The fuzzy adaptive controller consists of self tuning controller and fuzzy tuning part. The self tuning controller is designed with the continuous time GMV (generalized minimum variance) using emulator and weighted least square method. It is realized by the hybrid method. The controller has robust characteristics by adapting the inference rule in design parameters. The inference processing is tuned according to the operating point of the process having the nonlinear characteristics considering the practical application. We review the characteristics of the fuzzy adaptive controller through the simulation. The controller is applied to practical electric furnace. As a result, the fuzzy adaptive controller shows the better characteristics than the simple numeric self tuning controller and the PI controller.

  • PDF