• 제목/요약/키워드: fusion-pair

검색결과 47건 처리시간 0.021초

효모의 에탄올 생산능 및 세포 생존능의 증진을 위한 Rare-mating과 원형질체 융합 (Rare-Mating and Protoplast Fusion for the Improvement of Ethanol Producibility and Cell-Viability of Yeast)

  • 강태영;김근
    • 미생물학회지
    • /
    • 제37권4호
    • /
    • pp.312-316
    • /
    • 2001
  • 에탄올 발효능이 우수한 Saccharomyces에 속하는 4 균주를 가지고 여러 조합의 mating-pair 또는 fusion-pair를 만들고 이들 pair들로부터 만들어진 hybrid주들의 에탄올 생성능과 생존능을 통계적으로 분석한 결과, 에탄올 생성능에서는 차이가 없었으나, 생존능의 경우는 [S. kluveri $khl{\times}S.$ cerevisiae cp3]의 균주조합이 가장 우수한 hybrid를 낼 수 있는 것으로 나타났다. 실제로 에탄올 생성능과 잔당, 효율, 생존능에서 두루 우수한 균주는 [S. kluveri $khl{\times}S$ cerevisiae cp3] 조합에서 얻어진 융합주 clone No. 3가 에탄올 생성능 10.11%(w/v) 또는 12.81%(v/v), 잔당 3.53%(w/v), 생존능 62.65%, 발효 효율 92.2%로서 가장 발효능과 생존능이 우수한 균주로 선정되었다.

  • PDF

작물 모니터링을 위한 다중 센서 고해상도 위성영상의 시공간 융합 모델의 평가: Sentinel-2 및 RapidEye 영상 융합 실험 (Evaluation of Spatio-temporal Fusion Models of Multi-sensor High-resolution Satellite Images for Crop Monitoring: An Experiment on the Fusion of Sentinel-2 and RapidEye Images)

  • 박소연;김예슬;나상일;박노욱
    • 대한원격탐사학회지
    • /
    • 제36권5_1호
    • /
    • pp.807-821
    • /
    • 2020
  • 이 연구에서는 작물 모니터링을 위한 시계열 고해상도 영상 구축을 위해 기존 중저해상도 위성영상의 융합을 위해 개발된 대표적인 시공간 융합 모델의 적용성을 평가하였다. 특히 시공간 융합 모델의 원리를 고려하여 입력 영상 pair의 특성 차이에 따른 모델의 예측 성능을 비교하였다. 농경지에서 획득된 시계열 Sentinel-2 영상과 RapidEye 영상의 시공간 융합 실험을 통해 시공간 융합 모델의 예측 성능을 평가하였다. 시공간 융합 모델로는 Spatial and Temporal Adaptive Reflectance Fusion Model(STARFM), SParse-representation-based SpatioTemporal reflectance Fusion Model(SPSTFM)과 Flexible Spatiotemporal DAta Fusion(FSDAF) 모델을 적용하였다. 실험 결과, 세 시공간 융합 모델은 예측 오차와 공간 유사도 측면에서 서로 다른 예측 결과를 생성하였다. 그러나 모델 종류와 관계없이, 예측 시기와 영상 pair가 획득된 시기 사이의 시간 차이보다는 예측 시기의 저해상도 영상과 영상 pair의 상관성이 예측 능력 향상에 더 중요한 것으로 나타났다. 또한 작물 모니터링을 위해서는 오차 전파 문제를 완화할 수 있는 식생지수를 시공간 융합의 입력 자료로 사용해야 함을 확인하였다. 이러한 실험 결과는 작물 모니터링을 위한 시공간 융합에서 최적의 영상 pair 및 입력 자료 유형의 선택과 개선된 모델 개발의 기초정보로 활용될 수 있을 것으로 기대된다.

Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses

  • Xu, Xiang;Huang, Qiao;Ren, Yuan;Zhao, Dan-Yang;Yang, Juan
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.279-293
    • /
    • 2019
  • To ensure high quality data being used for data mining or feature extraction in the bridge structural health monitoring (SHM) system, a practical sensor fault diagnosis methodology has been developed based on the similarity of symmetric structure responses. First, the similarity of symmetric response is discussed using field monitoring data from different sensor types. All the sensors are initially paired and sensor faults are then detected pair by pair to achieve the multi-fault diagnosis of sensor systems. To resolve the coupling response issue between structural damage and sensor fault, the similarity for the target zone (where the studied sensor pair is located) is assessed to determine whether the localized structural damage or sensor fault results in the dissimilarity of the studied sensor pair. If the suspected sensor pair is detected with at least one sensor being faulty, field test could be implemented to support the regression analysis based on the monitoring and field test data for sensor fault isolation and reconstruction. Finally, a case study is adopted to demonstrate the effectiveness of the proposed methodology. As a result, Dasarathy's information fusion model is adopted for multi-sensor information fusion. Euclidean distance is selected as the index to assess the similarity. In conclusion, the proposed method is practical for actual engineering which ensures the reliability of further analysis based on monitoring data.

Identification of a Novel Fusion Gene (HLA-E and HLA-B) by RNA-seq Analysis in Esophageal Squamous Cell Carcinoma

  • Jiang, Yu-Zhang;Li, Qian-Hui;Zhao, Jian-Qiang;Lv, Jun-Ji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2309-2312
    • /
    • 2014
  • Esophageal squamous cell carcinoma (ESCC) is the most common histologic subtype of esophageal cancer and is characterized by a poor prognosis. Determining gene changes in ESCCs should improve understanding of putative risk factors and provide potential targets for therapy. We sequenced about 55 million pair-end reads from a pair of adjacent normal and ESCC samples to identify the gene expression level and gene fusion. Sanger sequencing was used to verify the result. About 17 thousand genes were expressed in the tissues, of which approximately 2400 demonstrated significant differences between tumor and adjacent non tumor tissue. GO and KEGG pathway analysis revealed that many of these genes were associated with cellular adherence and movement, simulation responses and immune responses. Notably we identified and validated one fusion gene, HLA-E and HLA-B, located 1 MB apart. We also identified thousands of remarkably expressed transcripts. In conclusion, a novel fusion gene HLA-E and HLA-B was identified in ESCC via whole transcriptome sequencing, which would be a biomarker for ESCC diagnosis and target for therapy, shedding new light for better understanding of ESCC tumorigenesis.

P-Triple Barrier Labeling: Unifying Pair Trading Strategies and Triple Barrier Labeling Through Genetic Algorithm Optimization

  • Ning Fu;Suntae Kim
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.111-118
    • /
    • 2023
  • In the ever-changing landscape of finance, the fusion of artificial intelligence (AI)and pair trading strategies has captured the interest of investors and institutions alike. In the context of supervised machine learning, crafting precise and accurate labels is crucial, as it remains a top priority to empower AI models to surpass traditional pair trading methods. However, prevailing labeling techniques in the financial sector predominantly concentrate on individual assets, posing a challenge in aligning with pair trading strategies. To address this issue, we propose an inventive approach that melds the Triple Barrier Labeling technique with pair trading, optimizing the resultant labels through genetic algorithms. Rigorous backtesting on cryptocurrency datasets illustrates that our proposed labeling method excels over traditional pair trading methods and corresponding buy-and-hold strategies in both profitability and risk control. This pioneering method offers a novel perspective on trading strategies and risk management within the financial domain, laying a robust groundwork for further enhancing the precision and reliability of pair trading strategies utilizing AI models.

Multi-focus Image Fusion using Fully Convolutional Two-stream Network for Visual Sensors

  • Xu, Kaiping;Qin, Zheng;Wang, Guolong;Zhang, Huidi;Huang, Kai;Ye, Shuxiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2253-2272
    • /
    • 2018
  • We propose a deep learning method for multi-focus image fusion. Unlike most existing pixel-level fusion methods, either in spatial domain or in transform domain, our method directly learns an end-to-end fully convolutional two-stream network. The framework maps a pair of different focus images to a clean version, with a chain of convolutional layers, fusion layer and deconvolutional layers. Our deep fusion model has advantages of efficiency and robustness, yet demonstrates state-of-art fusion quality. We explore different parameter settings to achieve trade-offs between performance and speed. Moreover, the experiment results on our training dataset show that our network can achieve good performance with subjective visual perception and objective assessment metrics.

분자동역학을 이용한 PMMA 평판의 열접합 및 분리에 대한 연구 (Investigation of Thermal Fusion Bonding and Separation of PMMA Substrates by using Molecular Dynamics Simulations)

  • 이태일
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.111-116
    • /
    • 2018
  • Thermal fusion bonding is a method to enclose open microchannels fabricated on polymer chips for use in lab-on-a-chip (LOC) devices. Polymethyl methacrylate (PMMA) is utilized in various biomedical-microelectromechanical systems (bio-MEMS) applications, such as medical diagnostic kits, biosensors, and drug delivery systems. These applications utilize PMMAs biochemical compatibility, optical transparency, and mold characteristics. In this paper, we elucidate both the conformational entanglement of PMMA molecules at the contact interfacial regime, and the qualitative nature of the thermal fusion bonding phenomena through systematic molecular dynamics simulations.

다중레이다 분산형 추적의 항적연관 및 융합 성능정가 (Performance Evaluation of Track-to-track Association and fusion in Distributed Multiple Radar Tracking)

  • 최원용;홍순목;이동관;정재경;조길석
    • 한국군사과학기술학회지
    • /
    • 제11권6호
    • /
    • pp.38-46
    • /
    • 2008
  • A distributed system for tracking multiple targets with a pair of multifunction radars is proposed and implemented. The system performs track-to-track association and track-to-track fusion at the fusion center to form fused tracks. The association and fusion are performed using target state information linked via communication nodes from a radar at a remote location. Many factors can affect the track-to-track association and fusion performances. They include delays in data transmission buffer of the remote radar, the error in estimating time-stamp of the remote radar, and the gating in track-to-track association. The effects on association and fusion performances due to these factors are investigated through extensive numerical simulations.

다중센서 융합 상이 지도를 통한 다중센서 기반 3차원 복원 결과 개선 (Refinements of Multi-sensor based 3D Reconstruction using a Multi-sensor Fusion Disparity Map)

  • 김시종;안광호;성창훈;정명진
    • 로봇학회논문지
    • /
    • 제4권4호
    • /
    • pp.298-304
    • /
    • 2009
  • This paper describes an algorithm that improves 3D reconstruction result using a multi-sensor fusion disparity map. We can project LRF (Laser Range Finder) 3D points onto image pixel coordinatesusing extrinsic calibration matrixes of a camera-LRF (${\Phi}$, ${\Delta}$) and a camera calibration matrix (K). The LRF disparity map can be generated by interpolating projected LRF points. In the stereo reconstruction, we can compensate invalid points caused by repeated pattern and textureless region using the LRF disparity map. The result disparity map of compensation process is the multi-sensor fusion disparity map. We can refine the multi-sensor 3D reconstruction based on stereo vision and LRF using the multi-sensor fusion disparity map. The refinement algorithm of multi-sensor based 3D reconstruction is specified in four subsections dealing with virtual LRF stereo image generation, LRF disparity map generation, multi-sensor fusion disparity map generation, and 3D reconstruction process. It has been tested by synchronized stereo image pair and LRF 3D scan data.

  • PDF

DEM 융합 기법을 이용한 다중영상스테레오 방법 (Multi-Image Stereo Method Using DEM Fusion Technique)

  • 임성민;우동민
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권4호
    • /
    • pp.212-222
    • /
    • 2003
  • The ability to efficiently and robustly recover accurate 3D terrain models from sets of stereoscopic images is important to many civilian and military applications. A stereo matching has been an important tool for reconstructing three dimensional terrain. However, there exist many factors causing stereo matching error, such as occlusion, no feature or repetitive pattern in the correlation window, intensity variation, etc. Among them, occlusion can be only resolved by true multi-image stereo. In this paper, we present multi-image stereo method using DEM fusion as one of efficient and reliable true multi-image methods. Elevations generated by all pairs of images are combined by the fusion process which accepts an accurate elevation and rejects an outlier. We propose three fusion schemes: THD(Thresholding), BPS(Best Pair Selection) and MS(Median Selection). THD averages elevations after rejecting outliers by thresholding, while BPS selects the most reliable elevation. To determine the reliability of a elevation or detect the outlier, we employ the measure of self-consistency. The last scheme, MS, selects the median value of elevations. We test the effectiveness of the proposed methods with a quantitative analysis using simulated images. Experimental results indicate that all three fusion schemes showed much better improvement over the conventional binocular stereo in natural terrain of 29 Palms and urban site of Avenches.