• Title/Summary/Keyword: fused sliced inverse regression

Search Result 6, Processing Time 0.017 seconds

Iterative projection of sliced inverse regression with fused approach

  • Han, Hyoseon;Cho, Youyoung;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.2
    • /
    • pp.205-215
    • /
    • 2021
  • Sufficient dimension reduction is useful dimension reduction tool in regression, and sliced inverse regression (Li, 1991) is one of the most popular sufficient dimension reduction methodologies. In spite of its popularity, it is known to be sensitive to the number of slices. To overcome this shortcoming, the so-called fused sliced inverse regression is proposed by Cook and Zhang (2014). Unfortunately, the two existing methods do not have the direction application to large p-small n regression, in which the dimension reduction is desperately needed. In this paper, we newly propose seeded sliced inverse regression and seeded fused sliced inverse regression to overcome this deficit by adopting iterative projection approach (Cook et al., 2007). Numerical studies are presented to study their asymptotic estimation behaviors, and real data analysis confirms their practical usefulness in high-dimensional data analysis.

Fused sliced inverse regression in survival analysis

  • Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.533-541
    • /
    • 2017
  • Sufficient dimension reduction (SDR) replaces original p-dimensional predictors to a lower-dimensional linearly transformed predictor. The sliced inverse regression (SIR) has the longest and most popular history of SDR methodologies. The critical weakness of SIR is its known sensitive to the numbers of slices. Recently, a fused sliced inverse regression is developed to overcome this deficit, which combines SIR kernel matrices constructed from various choices of the number of slices. In this paper, the fused sliced inverse regression and SIR are compared to show that the former has a practical advantage in survival regression over the latter. Numerical studies confirm this and real data example is presented.

On robustness in dimension determination in fused sliced inverse regression

  • Yoo, Jae Keun;Cho, Yoo Na
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.513-521
    • /
    • 2018
  • The goal of sufficient dimension reduction (SDR) is to replace original p-dimensional predictors with a lower-dimensional linearly transformed predictor. The sliced inverse regression (SIR) (Li, Journal of the American Statistical Association, 86, 316-342, 1991) is one of the most popular SDR methods because of its applicability and simple implementation in practice. However, SIR may yield different dimension reduction results for different numbers of slices and despite its popularity, is a clear deficit for SIR. To overcome this, a fused sliced inverse regression was recently proposed. The study shows that the dimension-reduced predictors is robust to the numbers of the slices, but it does not investigate how robust its dimension determination is. This paper suggests a permutation dimension determination for the fused sliced inverse regression that is compared with SIR to investigate the robustness to the numbers of slices in the dimension determination. Numerical studies confirm this and a real data example is presented.

Fused inverse regression with multi-dimensional responses

  • Cho, Youyoung;Han, Hyoseon;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.3
    • /
    • pp.267-279
    • /
    • 2021
  • A regression with multi-dimensional responses is quite common nowadays in the so-called big data era. In such regression, to relieve the curse of dimension due to high-dimension of responses, the dimension reduction of predictors is essential in analysis. Sufficient dimension reduction provides effective tools for the reduction, but there are few sufficient dimension reduction methodologies for multivariate regression. To fill this gap, we newly propose two fused slice-based inverse regression methods. The proposed approaches are robust to the numbers of clusters or slices and improve the estimation results over existing methods by fusing many kernel matrices. Numerical studies are presented and are compared with existing methods. Real data analysis confirms practical usefulness of the proposed methods.

More on directional regression

  • Kim, Kyongwon;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.553-562
    • /
    • 2021
  • Directional regression (DR; Li and Wang, 2007) is well-known as an exhaustive sufficient dimension reduction method, and performs well in complex regression models to have linear and nonlinear trends. However, the extension of DR is not well-done upto date, so we will extend DR to accommodate multivariate regression and large p-small n regression. We propose three versions of DR for multivariate regression and discuss how DR is applicable for the latter regression case. Numerical studies confirm that DR is robust to the number of clusters and the choice of hierarchical-clustering or pooled DR.

Case study: application of fused sliced average variance estimation to near-infrared spectroscopy of biscuit dough data (Fused sliced average variance estimation의 실증분석: 비스킷 반죽의 근적외분광분석법 분석 자료로의 적용)

  • Um, Hye Yeon;Won, Sungmin;An, Hyoin;Yoo, Jae Keun
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.835-842
    • /
    • 2018
  • The so-called sliced average variance estimation (SAVE) is a popular methodology in sufficient dimension reduction literature. SAVE is sensitive to the number of slices in practice. To overcome this, a fused SAVE (FSAVE) is recently proposed by combining the kernel matrices obtained from various numbers of slices. In the paper, we consider practical applications of FSAVE to large p-small n data. For this, near-infrared spectroscopy of biscuit dough data is analyzed. In this case study, the usefulness of FSAVE in high-dimensional data analysis is confirmed by showing that the result by FASVE is superior to existing analysis results.