• 제목/요약/키워드: furnace exit temperature

검색결과 16건 처리시간 0.024초

Package 수관 보일러의 연소실 설계에 관한 연구 (Study on Furnace Design for Packaged Water-Tube Boilers)

  • 인종수
    • 한국산업융합학회 논문집
    • /
    • 제1권2호
    • /
    • pp.13-19
    • /
    • 1998
  • A computer simulation program for the design of furnace witjin pakaged water-tube boilres is developed and the developed computer program is successfully applied to design the furnace for packaged water-tube boiler. The model by experiment and the model by Hottel are used to predict the exit gas temperature of furnace. The result by two models is discussed and is shown that in the case of constant cross section in furnace, the result is same but in changing the configuration of cross section, the difference by two models is not small.

  • PDF

냉연 연속 소둔로 가열대 판온제어 (Strip temperature control for the heating furnace in the continuous-annealing line)

  • 정호성;유석환;백기남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.779-782
    • /
    • 1990
  • Recently batch type cold rolling processes have been replaced by continuous annealing type processes for cold rolled sheets of mild steel and high strength steel in order to obtain higher productivity, labor saving. In the continuous annealing line, it is very important to maintain the target steel strip temperature at the exit side of each furnace. The automation system of continuous annealing line is based on a hierachical composition. This paper shows how to preset the set value of furnace temperature control for the heating section in a continuous annealing line. Saying in other words, this paper presents the development of an adaptive control approach to control the exit strip temperature in the continuous annealing line. There are three parts in this approach; one is a process modelling and another is recursive parameter estimation and the other is a design of temperature controller.

  • PDF

직접 가열식 가열로 내 최적 분위기온도 분포 해석에 관한 연구 (A Study of Optimal Distribution of Gas Temperature in Directly-Fired Reheating Furnace)

  • 정의수;심성민;김영득;강덕홍;김우승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2122-2125
    • /
    • 2008
  • Because the reheating furnace consumes a large amount of energy to heat up the slabs, it is very important to find an optimal temperature patterns in the furnace for energy saving as well as uniform target temperature at the exit of the furnace. In this study, the temperature profiles in the slab are determined by solving the transient one-dimensional heat conduction equation in conjunction with boundary conditions with total heat exchange factors. The optimal temperature patterns are obtained to minimize the fuel consumption with satisfying the predetermined constraint conditions. The design optimization is performed by using a genetic algorithm and the optimal results are validated with results obtained from the PIDO tool, called as P.I.A.n.O.

  • PDF

순산소를 이용한 유리 용해로의 연소특성에 관한 실험적 연구 (Experimental study on combustion characteristics of oxy-fuel glass melting furnace)

  • 김세원;안재현;김용모;신명철
    • 한국연소학회지
    • /
    • 제9권1호
    • /
    • pp.1-10
    • /
    • 2004
  • The results of a series of experiments executed by using two pilot-scale oxy-fuel burners are presented. The oxy-fuel burners are designed for maximum capacity of 50,000kcal/hr, 200,000kcal/hr and installed in the test furnace. The effects of turn-down ratio, excess oxygen ratio, nozzle exit velocity, injection angle, and swirl vane angle on the combustion characteristic are investigated. Temperature distributions are measured using R-type and Molybdenum sheathed C-type thermocouple at various points of the flame. The results showed that maximum temperature and mean temperature increase with the increase of turn-down ratio and momentum. The maximum flame temperature was increased about 35% compared to the case of equivalent air operated condition. In addition, optimum burner type, excess oxygen ratio and nozzle characteristics are obtained for this oxy-fuel glass melting furnace.

  • PDF

Effect of Air Velocity on Combustion Characteristics in Small-Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • 한국연소학회지
    • /
    • 제10권1호
    • /
    • pp.1-6
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressure-swirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates ranging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2$, NOx, $SO_2$, flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity on $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

Effect of Air Velocity on Combustion Characteristics Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2005년도 동계 학술대회 논문집
    • /
    • pp.76-82
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressureswirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates raging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2,\;NOx,\;S0_2,$ flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$ concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

고효율 순산소 버너의 연소 특성에 관한 실험적 연구 (Experimental study on combustion characteristics of high efficiency oxy-fuel burner)

  • 김세원;안재현;김민수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.57-64
    • /
    • 2002
  • This paper describes the results of a series of experiments executed by using two pilot-scale oxv-fuel burners are designed for maximum capacity of 50,000 kacl/hr, 300,000 kcal/hr and installed in the test furnace. The effects of turn-down ratio, excess oxygen ratio, nozzle exit velocity, injection angle, swirl vane angle and inlet oxygen temperature on the combustion characteristic are investigated. Temperature distributions are measured using R-type and Molybdenum sheathed C-type thermocouple. The results showed that maximum temperature and mean temperature increase with the increase of turn-down ratio and inlet oxygen temperature. The maximum flame temperature was increased about 35% compared to the case of equivalent air operated condition. In addition, Optimum excess oxygen ratio and nozzle characteristics are obtained for this oxy-fuel glass melting furnace.

  • PDF

열병합/산업용 보일러 화로에서의 연소 해석 (Modeling of Combustion in Co-Generation / Industrial Boiler Furnace)

  • 김병윤;박부민;이경모
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.842-846
    • /
    • 2001
  • Our company produces boilers for industrial usages or power plants. The aim of this study is to investigate the flame structure, heat transfer to evaporator tube wall and NOx emission in the furnaces. Also we are to derive correct FEGT(Furnace Exit Gas Temperature) characteristic curve. When we design furnace and superheater, economizer etc. FEGT characteristic curve is very important factor for optimum design. We calculated turbulent reacting flow, heat transfer and NOx emission in furnace by using numerical modeling with the help of commercial code. Three dimensional steady state calculation is done. k-e turbulence model and equilibrium chemistry combustion model with $\beta-probability$ density function is used. To calculate radiation heat transfer discrete ordinates model is used. And we measured FEGT at several operating plants. Measurement is done by R-type thermocouple. Radiation shield is attached to the thermocouple to prevent radiation effect. Measured and calculated results show good agreement. And we could understand the flame structure and NOx formation positions in each furnaces.

  • PDF

대용량 청정 공기 가열 장치 설계 (Design of Large Capacity Clean Air Heater)

  • 김정우;정광수;전민준;이규준
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.115-118
    • /
    • 2010
  • 공기 가열 장치는 크게 연소식과 열교환식 2가지가 있으며, 본 논문은 공기를 오염시키지 않은 열교환 방식인 청정 공기 가열 장치의 설계 방법을 기술하였다. 가열 장치는 크게 연소기 (Burner), 가열로 (Furnace), 열교환기 (Heat Exchanger), 배기구로 구성되어 되며, 가열되는 공기 유량과 입/출구 온도값으로부터 가열원인 연소기의 열용량과 연소기 연료인 LNG의 소요량을 구한다. 열교환기 내부에서 연소기의 뜨거운 연소가스와 가열되는 차가운 공기간의 열매체를 통한 간접 열교환이 이루어지므로, 가열되는 공기의 입/출구 온도에서 열교환기의 용량, 크기, 작동 최대 온도를 얻을 수 있게 된다.

  • PDF

발전보일러의 최적연소조정에 대한 실험적 연구 (The Study of Optimized Combustion Tuning for Fossil Power Plant)

  • 정재진;송정일
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.102-108
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for NOx controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2$, NOx and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective back-pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing NOx emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

  • PDF