• Title/Summary/Keyword: furnace design

Search Result 347, Processing Time 0.024 seconds

A study on the heat transfer characteristics of gas-radiative medium into a high temperature generator of an absorption refrigerator (흡수식 냉동기 고온재생기 내의 가스복사체 열전달 특성에 관한 연구)

  • Jung, Dae-In;Kim, Yong-Mo;Bae, Suk-Tae
    • Solar Energy
    • /
    • v.18 no.1
    • /
    • pp.81-89
    • /
    • 1998
  • In this paper an experimental was done to design combustion chambers which is required radiation strength of high temperature generator of absorption rigerator. Partiqularly, in combustion chamber radiative mediums were set and basic experiments were done according to its size by radiation strength and effects of heat transfer promotion. The results are as follows : 1) When radiative mediums were set in small combustion furnace burning nonframely radiative heat transfer was effected. 2) In case that area ratio($A/A_o$) of radiative medium is 0.82 or over, temperature fluctuation effects of furnace inside were not nearly. 3) In experimental boundary heat transfer effects were 1.8 times by setting up radiative medium. Specially, $q/{\Delta}T$ values of furnace inside were uniformed nearly by setting up radiative mediums.

  • PDF

Strip temperature control for the heating furnace in the continuous-annealing line (냉연 연속 소둔로 가열대 판온제어)

  • 정호성;유석환;백기남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.779-782
    • /
    • 1990
  • Recently batch type cold rolling processes have been replaced by continuous annealing type processes for cold rolled sheets of mild steel and high strength steel in order to obtain higher productivity, labor saving. In the continuous annealing line, it is very important to maintain the target steel strip temperature at the exit side of each furnace. The automation system of continuous annealing line is based on a hierachical composition. This paper shows how to preset the set value of furnace temperature control for the heating section in a continuous annealing line. Saying in other words, this paper presents the development of an adaptive control approach to control the exit strip temperature in the continuous annealing line. There are three parts in this approach; one is a process modelling and another is recursive parameter estimation and the other is a design of temperature controller.

  • PDF

Experimental and Numerical Investigation for NOx Reduction with Fuel Lean Reburning System (NOx저감을 위한 연료희박 재연소 기법의 실험 및 수치적 연구)

  • Kim, Hak-Young;Baek, Seung-Wook;Son, Hee;Kim, Se-Won
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.18-25
    • /
    • 2009
  • Fuel lean reburning method is very attractive way in comparison with conventional reburning method for reducing NOX. Meanwhile, the knowledge of the how flue gas re-circulated, temperature distribution and species concentration is crucial for the design and operation of an effective fuel lean reburning system. For this reason, numerical analysis of fuel lean reburning system is a very important and challenge task. In this work, the effect of fuel lean reburn system on NOX reduction has been experimentally and numerically conducted. Experimental study has been conducted with a 15kW lab scale furnace. Liquefied Petroleum Gas is used as main fuel and reburn fuel. To carry out numerical study, the finite-volume based commercial computational fluid dynamics (CFD) code FLUENT6.3 was used to simulate the reacting flow in a given laboratory furnace. Steady state, three dimensional analysis performed for turbulent reactive flow and radiative heat transfer in the furnace.

  • PDF

Physical and Mechanical Properties of Low Carbon Green Concrete (저탄소 그린콘크리트의 물리·역학적 특성)

  • Cho, Il Ho;Sung, Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.123-128
    • /
    • 2013
  • This study was performed to evaluate the slump flow, air content, setting time, compressive strength, adiabatic temperature rise and diffusion coefficient of chloride used ordinary portland cement, crushed coarse aggregate, crushed sand, river sand, fly ash, limestone powder, blast furnace slag powder and superplasticizer to find optimum mix design of low carbon green concrete for structures. The performances of low carbon green concrete used fly ash, limestone powder and blast furnace slag powder were remarkably improved. This fact is expected to have economical effects in the manufacture of low carbon green concrete for structures. Accordingly, the fly ash, limestone powder and blast furnace slag powder can be used for low carbon green concrete material.

A Computing Method of a Process Coefficient in Prediction Model of Plate Temperature using Neural Network (신경망을 이용한 판온예측모델내 공정상수 설정 방법)

  • Kim, Tae-Eun;Lee, Haiyoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.51-57
    • /
    • 2014
  • This paper presents an algorithmic type computing technique of process coefficient in predicting model of temperature for reheating furnace and also suggests a design method of neural network model to find an adequate value of process coefficient for arbitrary operating conditions including test conditons. The proposed neural network use furnace temperature, line speed and slab information as input variables, and process coefficient is output variable. Reasonable process coefficients can be obtained by an algorithmic procedure proposed in this paper using process data gathered at test conditons. Also, neural network model output equal process coefficient under same input conditions. This means that adquate process coefficients can be found by only computing neural network model without additive test even if operating conditions vary.

Influence of granulated blast furnace slag as fine aggregate on properties of cement mortar

  • Patra, Rakesh Kumar;Mukharjee, Bibhuti Bhusan
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.611-629
    • /
    • 2018
  • The objective of present study is to investigate the effect of granulated blast furnace slag (GBS) as partial substitution of natural sand on behaviour of cement mortar. For this, the methods of factorial design with water cement (w/c) ratio and incorporation percentages of GBS as replacement of natural fine aggregate i.e., GBS(%) as factors are followed. The levels of factor w/c ratio are fixed at 0.4, 0.45, and 0.5 and the levels of factor GBS(%) are kept fixed as 0%, 20%, 40%, 60%, 80% and 100%. The compressive strength (CS) of mortar after 3, 7, 14, 28, 56 and 90 days, and water absorption (WA) are chosen as responses of the study. Analysis of variance (ANOVA) of experimental results has been carried out and those are illustrated by ANOVA tables, main effect and interaction plots. The results of study depict that the selected factors have substantial influence on the strength and WA of mortar. However, the interaction of factors has no substantial impact on CS and WA of mixes.

Evaluation on Surface Scaling and Frost Resistance for concrete Deteriorated due to Cyclic Freezing and Thawing with Inherent Chloride

  • Kim, Gyu Yong;Cho, Bong Suk;Lee, Seung Hoon;Kim, Moo Han
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.177-185
    • /
    • 2007
  • The purpose of this study is to evaluate freezing-thawing and surface scaling resistance in order to examine the frost durability of concrete in a chloride-inherent environment. The mixing design for this study is as follows: 3 water binder ratios of 0.37, 0.42, and 0.47; 2-ingredient type concrete (50% OPC concrete and 50% ground granulated blast-furnace slag), and 3-ingredient type concrete (50% OPC concrete, 15% fly ash, and 35% ground granulated blast-furnace slag). As found in this study, the decrease of durability was much more noticeable in combined deterioration through both salt damage and frost damage than in a single deterioration through either ofthese; when using blast-furnace slag in freezing-thawing seawater, the frost durability and surface deterioration resistance was evaluated as higher than when using OPC concrete. BF 50% concrete, especially, rather than BFS35%+FA15%, had a notable effect on resistance to chloride penetration and freezing/expansion. It has been confirmed that surface deterioration can be evaluated through a quantitative analysis of scaling, calculated from concrete's underwater weight and surface-dry weight as affected by the freezing-thawing of seawater.

Development of High Performance Intelligent Oxy-fuel Combustion Reheating Furnace (고성능 순산소 연소시스템의 가열특성에 대한 연구)

  • Lee, Sang-Jun;Noh, Dong-Soon;Kim, Hyouck-Ju;Lee, Eun-Kyung;Choi, Kyu-Sung;Ko, Chang-Buk;Lee, Sung-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.175-180
    • /
    • 2004
  • Improving furnace efficiency is a high priority need for aluminum, glass, steel and other metal casting industries. Oxy-fuel combustion is considered to be one of the most effective method to improve thermal efficiency and reduce $NO_x$, SOx and $CO_2$ emissions for high temperature furnaces. The characteristics of an oxy-fuel flame, in particular its shape, radiation profile and exhaust gas composition are considerably different to those of an air-fuel burner. For this reason, a new approach is needed regarding factors such as burner design, power input levels, number and positioning strategies of burners and also control philosophies. In this paper will discuss the latest developments of high performance oxy-fuel combustion reheating furnace system. This high performance oxy-fuel combustion system will be shown to be technologically superior to other types of combustion systems in the areas of fuel efficiency, emissions and productivity.

  • PDF

The Development of Boiler Furnace Pressure Control Algorithm and Distributed Control System for Coal-Fired Power Plant (석탄화력발전소 보일러 노내압력 제어알고리즘과 분산제어시스템의 개발)

  • Lim, Gun-Pyo;Hur, Kwang-Bum;Park, Doo-Yong;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.3
    • /
    • pp.117-126
    • /
    • 2013
  • This paper is written for the development and application of boiler furnace pressure control algorithm and distributed control system of coal-fired power plant by the steps of design, coding, simulation test, site installation and site commissioning test. The control algorithms were designed in the shape of cascade control for two parts of furnace pressure control and induced draft fan pitch blade by standard function blocks. This control algorithms were coded to the control programs of distributed control systems. The simulator for coal-fired power plant was used in the test step and automatic control, sequence control and emergency stop tests were performed successfully like the tests of the actual power plant. The reliability was obtained enough to be installed at the actual power plant and all of distributed control systems had been installed at power plant and all signals were connected mutually. Tests for reliability and safety of plant operation were completed successfully and power plant is being operated commercially. It is expected that the project result will contribute to the safe operation of domestic new and retrofit power plants, the self-reliance of coal-fired power plant control technique and overseas business for power plant.

Characteristic of the Radiation Heat Flux Distribution for the KIER Solar Furnace (KIER 태양로의 열유속 분포 특성)

  • Chai, Kwan-Kyo;Lee, Hyun-Jin;Kim, Jong-Kyu;Yoon, Hwan-Ki;Lee, Sang-Nam;Kang, Yong-Heack;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.74-79
    • /
    • 2011
  • Concentration characteristics of the KIER solar furnace are analyzed with a heat flux measurement technique. Total heat capacity of 40kW was confirmed within 1.04% average error, and the normalized maximum heat flux of 3,452 $kW/m^2$ was proved. Non-Gaussian flux distribution in the vertical direction implies that reflectors should not be random rather inclined downwards. Moreover, we characterized flux distribution variations with furnace blind opening ratio, distance from the focal plane, and misalignment of the measurement system. Based on the results, the heat flux distribution can be simply estimated once reflectivity and direct normal insolation values are known. This study will be helpful to the design and the performance evaluation of receivers or chemical reactors.

  • PDF