• Title/Summary/Keyword: fungal diversity

Search Result 277, Processing Time 0.03 seconds

Diversity Census of Fungi in the Ruminal Microbiome: A meta-analysis (반추위 곰팡이 다양성 조사 : 메타분석)

  • Song, Jaeyong;Jeong, Jin Young;Kim, Minseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.466-472
    • /
    • 2017
  • This study was designed to examine the diversity census of fungi in rumen microbiome via meta-analysis of fungal 28S rDNA sequences. Both terms, "rumen" and "ruminal," were searched to retrieve the sequences of rumen fungi. As of September 2016, these sequences (n=165) of ruminal origin were retrieved from the Ribosomal Database Project (RDP; http://rdp.cme.msu.edu), an archive of all 28S rDNA sequences and were assigned to the phyla Ascomycota, Neocallimastigomycota, and Basidiomycota, which accounted for 109, 48, and 8 of the 165 sequences, respectively. Ascomycota sequences were assigned to the genera Pseudonectria, Magnaporthe, Alternaria, Cochliobolus, Cladosporium, and Davidiella, including fungal plant pathogens or mycotoxigenic species. Moreover, Basidiomycota sequences were assigned to the genera Thanatephorus and Cryptococcus, including fungal plant pathogens. Furthermore, Neocallimastigomycota sequences were assigned to the genera Cyllamyces, Neocallimastix, Anaeromyces, Caecomyces, Orpinomyces, and Piromyces, which may degrade the major structural carbohydrates of the ingested plant material. This study provided a collective view of the rumen fungal diversity using a meta-analysis of 28S rDNA sequences. The present results will provide a direction for further studies on ruminal fungi and be applicable to the development of new analytic tools.

Endophytic Fungal Diversity Associated with the Roots of Coastal Sand-dune Plants in the Sindu-ri Coastal Sand Dune, Korea (신두리 해안사구에 자생하는 사구식물 내생진균의 다양성 분석)

  • You, Young-Hyun;Seo, Yeonggyo;Yoon, Hyeokjun;Kim, Hyun;Kim, Ye-Eun;Khalmuratova, Irina;Rim, Soon-Ok;Kim, Changmu;Kim, Jong-Guk
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.300-310
    • /
    • 2013
  • The coastal sand-dune plants of eight species; Argusia sibirica, Calystegia soldanella, Elymus mollis, Lithospermum zollingeri, Raphanus sativus, Salsola collina, Zoysia macrostachya, and Zoysia sinica were collected from the Shindu-ri coastal sand dune. Ninety-eight endophytic fungal strains were isolated from the roots of these plants, analyzed, and identified by sequences in their internal transcribed spacers (ITS) at the ITS1, 5.8S, and ITS2 regions. The diversity of endophytic fungi isolated from coastal sand-dune plants was confirmed with various diversity indices. The fungal strains belonged to thirteen orders: Capnodiales (3.09%), Eurotiales (70.10%), Glomerellales (1.03%), Helotiales (3.09%), Hypocreales (9.28%), Mortierellales (2.06%), Onygenales (1.03%), Ophiostomatales (1.03%), Pleosporales (1.03%), Polyporales (1.03%), Russulales (1.03%), Saccharomycetales (2.06%), and Xylariales (1.03%). Of the endophytic fungal strains collected, Penicillium (59.18% in Eurotiales) and Fusarium (5.10% in Hypocreales) were the most abundant in coastal sand-dune plants. The endophytic fungal strains isolated from C. soldanella were more diverse compared to strains from the other coastal sand-dune plants.

Diversity and Plant Growth Promoting Capacity of Endophytic Fungi Associated with Halophytic Plants from the West Coast of Korea

  • Khalmuratova, Irina;Kim, Hyun;Nam, Yoon-Jong;Oh, Yoosun;Jeong, Min-Ji;Choi, Hye-Rim;You, Young-Hyun;Choo, Yeon-Sik;Lee, In-Jung;Shin, Jae-Ho;Yoon, Hyeokjun;Kim, Jong-Guk
    • Mycobiology
    • /
    • v.43 no.4
    • /
    • pp.373-383
    • /
    • 2015
  • Five halophytic plant species, Suaeda maritima, Limonium tetragonum, Suaeda australis, Phragmites australis, and Suaeda glauca Bunge, which are native to the Muan salt marsh of South Korea, were examined for fungal endophytes by sequencing the internal transcribed spacer (ITS) region containing ITS1, 5.8S rRNA, and ITS2. In total, 160 endophytic fungal strains were isolated and identified from the roots of the 5 plant species. Taxonomically, all 160 strains belonged to the phyla Ascomycota, Basidiomycota, and Zygomycota. The most dominant genus was Fusarium, followed by the genera Penicillium and Alternaria. Subsequently, using 5 statistical methods, the diversity indices of the endophytes were determined at genus level. Among these halophytic plants, P. australis was found to host the greatest diversity of endophytic fungi. Culture filtrates of endophytic fungi were treated to Waito-C rice seedlings for plant growth-promoting effects. The fungal strain Su-3-4-3 isolated from S. glauca Bunge provide the maximum plant length (20.1 cm) in comparison with wild-type Gibberella fujikuroi (19.6 cm). Consequently, chromatographic analysis of the culture filtrate of Su-3-4-3 showed the presence of physiologically active gibberellins, $GA_1$ (0.465 ng/mL), $GA_3$ (1.808 ng/mL) along with other physiologically inactive $GA_9$ (0.054 ng/mL) and $GA_{24}$ (0.044 ng/mL). The fungal isolate Su-3-4-3 was identified as Talaromyces pinophilus.

Genetic Divesity Analysis of Fungal Species by Universal Rice Primer (URP)-PCR (Universal Rice Primer (URP)-PCR에 의한 곰팡이 종의 유전적 다양성 검정)

  • Kang, Hee-Wan
    • The Korean Journal of Mycology
    • /
    • v.40 no.2
    • /
    • pp.78-85
    • /
    • 2012
  • URP primers that were derived from repetitive DNA sequence of rice weedy rice have been applied for producing PCR polymorphisms in different fungal species. URP-PCR protocol employed stringent PCR with high annealing temperature over $55^{\circ}C$ throughout the thermo-cycling reaction, giving high reproducibility. Under the PCR condition, Each single URP primer produced characteristic fingerprints from diverse genomes of different fungal species, indicating its universal applicability. URP-PCR has been accessed for applicability to various fungal species with 33 genus, 142 species and 1,489 isolates. Numerous related papers have demonstrated that URP-PCR profiles of fungal species are very useful for identifying fungal species at intra and inter species levels. The results were reviewed in this paper.

Molecular and Morphological Identification of Fungal Species Isolated from Bealmijang Meju

  • Kim, Ji-Yeun;Yeo, Soo-Hwan;Baek, Sung-Yeol;Choi, Hye-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1270-1279
    • /
    • 2011
  • Bealmijang is a short-term aged paste made from meju, which is a brick of fermented soybeans and other ingredients. Different types of bealmijang are available depending on the geographic region or ingredients used. However, no study has clarified the microbial diversity of these types. We identified 17 and 14 fungal species from black soybean meju (BSM) and buckwheat meju (BWM), respectively, on the basis of morphology, culture characteristics, and internal transcribed spacer and ${\beta}$-tubulin gene sequencing. In both meju, Aspergillus oryzae, Rhizopus oryzae, Penicillium polonicum, P. steckii, Cladosporium tenuissimum, C. cladosporioides, C. uredinicola, and yeast species Pichia burtonii were commonly found. Moreover, A. flavus, A. niger, P. crustosum, P. citrinum, Eurotium niveoglaucum, Absidia corymbifera, Setomelanomma holmii, Cladosporium spp. and unclassified species were identified from BSM. A. clavatus, Mucor circinelloides, M. racemosus, P. brevicompactum, Davidiella tassiana, and Cladosporium spp. were isolated from BWM. Fast growing Zygomycetous fungi is considered important for the early stage of meju fermentation, and A. oryae and A. niger might play a pivotal role in meju fermentation owing to their excellent enzyme productive activities. It is supposed that Penicillium sp. and Pichia burtonii could contribute to the flavor of the final food products. Identification of this fungal diversity will be useful for understanding the microbiota that participate in meju fermentation, and these fungal isolates can be utilized in the fermented foods and biotechnology industries.

First Report of Six Trichoderma Species Isolated from Freshwater Environment in Korea

  • Goh, Jaeduk;Nam, Bora;Lee, Jae Sung;Mun, Hye Yeon;Oh, Yoosun;Lee, Hyang Burm;Chung, Namil;Choi, Young-Joon
    • The Korean Journal of Mycology
    • /
    • v.46 no.3
    • /
    • pp.213-225
    • /
    • 2018
  • Trichoderma (Hypocreaceae) is one of the most ubiquitous genera worldwide. This genus has an excellent ability to adapt to diverse environments, even under poor nutritional conditions, such as in freshwater. However, little is known about the diversity of Trichoderma species in freshwater environments. In this study, we isolated diverse fungal strains from algae, plant litter, and soil sediment in streams in Korea. The strains were identified based on molecular phylogenetic analyses of internal transcribed spacer (ITS) rDNA and translation elongation factor 1 ($TEF1{\alpha}$) sequences. We also investigated their morphological characteristics by microscopic observation and determination of cultural features on different media. As a result, six Trichoderma species were found in Korea: T. afroharzianum, T. capillare, T. guizhouense, T. paraviridescens, T. reesei, and T. saturnisporum. Interestingly, T. paraviridescens showed both cellulose activity and hypoxia stress tolerance phenotypes, indicating its role as a decomposer in freshwater ecosystems. Our study revealed that freshwater environment could be a good candidate for investigating the species diversity of Trichoderma.

Pyrosequencing and Taxonomic Composition of the Fungal Community from Soil of Tricholoma matsutake in Gyeongju

  • Jeong, Minji;Choi, Doo-Ho;Cheon, Woo-Jae;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.686-695
    • /
    • 2021
  • Tricholoma matsutake is an ectomycorrhizal fungus that has a symbiotic relationship with the root of Pinus densiflora. Soil microbial communities greatly affect the growth of T. matsutake, however, few studies have examined the characteristics of these communities. In the present study, we analyzed soil fungal communities from Gyeongju and Yeongdeok using metagenomic pyrosequencing to investigate differences in fungal species diversity, richness, and taxonomic composition between the soil under T. matsutake fruiting bodies (Sample 2) and soil where the fairy ring of T. matsutake was no longer present (Sample 1). The same spot was investigated three times at intervals of four months to observe changes in the community. In the samples from Yeongdeok, the number of valid reads was lower than that at Gyeongju. The operational taxonomic units of most Sample 2 groups were less than those of Sample 1 groups, indicating that fungal diversity was low in the T. matsutake-dominant soil. The soil under the T. matsutake fruiting bodies was dominated by more than 51% T. matsutake. From fall to the following spring, the ratio of T. matsutake decreased. Basidiomycota was the dominant phylum in most samples. G-F1-2, G-F2-2, and Y-F1-2 had the genera Tricholoma, Umbelopsis, Oidiodendron, Sagenomella, Cladophialophora, and Phialocephala in common. G-F1-1, G-F2-1, and Y-F1-1 had 10 genera including Umbelopsis and Sagenomella in common. From fall to the following spring, the amount of phyla Basidiomycota and Mucoromycota gradually decreased but that of phylum Ascomycota increased. We suggest that the genus Umbelopsis is positively related to T. matsutake.

Combined Application Effects of Arbuscular Mycorrhizal Fungi and Biochar on the Rhizosphere Fungal Community of Allium fistulosum L.

  • Chunxiang Ji;Yingyue Li;Qingchen Xiao;Zishan Li;Boyan Wang;Xiaowan Geng;Keqing Lin;Qing Zhang;Yuan Jin;Yuqian Zhai;Xiaoyu Li;Jin Chen
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1013-1022
    • /
    • 2023
  • Arbuscular mycorrhizal fungi (AMF) are widespread soil endophytic fungi, forming mutualistic relationships with the vast majority of land plants. Biochar (BC) has been reported to improve soil fertility and promote plant growth. However, limited studies are available concerning the combined effects of AMF and BC on soil community structure and plant growth. In this work, a pot experiment was designed to investigate the effects of AMF and BC on the rhizosphere microbial community of Allium fistulosum L. Using Illumina high-throughput sequencing, we showed that inoculation of AMF and BC had a significant impact on soil microbial community composition, diversity, and versatility. Increases were observed in both plant growth (the plant height by 8.6%, shoot fresh weight by 12.1%) and root morphological traits (average diameter by 20.5%). The phylogenetic tree also showed differences in the fungal community composition in A. fistulosum. In addition, Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that 16 biomarkers were detected in the control (CK) and AMF treatment, while only 3 were detected in the AMF + BC treatment. Molecular ecological network analysis showed that the AMF + BC treatment group had a more complex network of fungal communities, as evidenced by higher average connectivity. The functional composition spectrum showed significant differences in the functional distribution of soil microbial communities among different fungal genera. The structural equation model (SEM) confirmed that AMF could improve the microbial multifunctionality by regulating the rhizosphere fungal diversity and soil properties. Our findings provide new information on the effects of AMF and biochar on plants and soil microbial communities.

Intraspecific Functional Variation of Arbuscular Mycorrhizal Fungi Originated from Single Population on Plant Growth

  • Lee, Eun-Hwa;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.48-48
    • /
    • 2014
  • Arbuscular Mycorrhizal Fungi(AMF) is widespread symbiont forming mutualistic relationship with plant root in terrestrial forest in ecosystem. They provide improved absorption of nutrient and water, and enhance the resistance against plant pathogen or polluted soil, therefore AM fungi are important for survival and maintaining of individual or community of plant. For last decade, many studies about the functional variation of AM fungi on host plant growth response were showed that different geographic isolates, even same species, have different effect on host plant. However, little was known about functional variation of AM fungal isolates originated single population, which provide important insight about intraspecific diversity of AMF and their role in forest ecosystem. In this study, four AM fungal isolates of Rhizophagus clarus were cultured in vitro using transformed carrot (Daucus carota) root and they showed the difference between isolates in ontogenic characteristics such as spore density and hyphal length. The plant growth response by mycorrhizas were measured also. After 20 weeks from inoculation of these isolates to host plants, dry weight, Root:Shoot ratio, colonization rates and N, P concentration of host plant showed host plant was affected differently by AM fungal isolates. This results suggest that AM fungi have high diversity in their functionality in intraspecific level, even in same population.

  • PDF