• Title/Summary/Keyword: fundamental equation

Search Result 452, Processing Time 0.027 seconds

NORM CONVERGENCE OF THE LIE-TROTTER-KATO PRODUCT FORMULA AND IMAGINARY-TIME PATH INTEGRAL

  • Ichinose, Takashi
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.337-348
    • /
    • 2001
  • The unitary Lie-Trotter-Kato product formula gives in a simplest way a meaning to the Feynman path integral for the Schroding-er equation. In this note we want to survey some of recent results on the norm convergence of the selfadjoint Lie-Trotter Kato product formula for the Schrodinger operator -1/2Δ + V(x) and for the sum of two selfadjoint operators A and B. As one of the applications, a remark is mentioned about an approximation therewith to the fundamental solution for the imaginary-time Schrodinger equation.

  • PDF

SOLUTIONS OF QUASILINEAR WAVE EQUATION WITH STRONG AND NONLINEAR VISCOSITY

  • Hwang, Jin-Soo;Nakagiri, Shin-Ichi;Tanabe, Hiroki
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.867-885
    • /
    • 2011
  • We study a class of quasilinear wave equations with strong and nonlinear viscosity. By using the perturbation method for semilinear parabolic equations, we have established the fundamental results on existence, uniqueness and continuous dependence on data of weak solutions.

OPTION PRICING UNDER GENERAL GEOMETRIC RIEMANNIAN BROWNIAN MOTIONS

  • Zhang, Yong-Chao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1411-1425
    • /
    • 2016
  • We provide a partial differential equation for European options on a stock whose price process follows a general geometric Riemannian Brownian motion. The existence and the uniqueness of solutions to the partial differential equation are investigated, and then an expression of the value for European options is obtained using the fundamental solution technique. Proper Riemannian metrics on the real number field can make the distribution of return rates of the stock induced by our model have the character of leptokurtosis and fat-tail; in addition, they can also explain option pricing bias and implied volatility smile (skew).

Design Consideration of Half-Bridge LLC Resonant Converter

  • Choi, Hang-Seok
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • LLC resonant converters display many advantages over the conventional LC series resonant converter such as narrow frequency variation over wide range of load and input variation and zero voltage switching even under no load conditions. This paper presents analysis and design consideration for the half bridge LLC resonant converter. Using the fundamental approximation, the gain equation is obtained, where the leakage inductance in the transformer secondary side is also considered. Based on the gain equation, the practical design procedure is investigated to optimize the resonant network for a given input/output specifications. The design procedure is verified through an experimental prototype of the 115W half-bridge LLC resonant converter.

Thick laminated circular plates on elastic foundation subjected to a concentrated load

  • Sheng, Hongyu
    • Structural Engineering and Mechanics
    • /
    • v.10 no.5
    • /
    • pp.441-449
    • /
    • 2000
  • In this study, the state equation for axisymmetric bending of laminated transversely isotropic circular plates on elastic foundation is established on the basis of three-dimensional elasticity. By using the expansions of Bessel functions, an analytical solution of the problem is presented. As a result, all the fundamental equations of three-dimensional elasticity can be satisfied exactly and all the independent elastic constants can be fully taken into account. Furthermore, the continuity conditions at the interfaces of plies can also be satisfied.

A Boundary Element Method for Nonlinear Boundary Value Problems

  • Park, Yunbeom;Kim, P.S.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.7 no.1
    • /
    • pp.141-152
    • /
    • 1994
  • We consider a numerical scheme for solving a nonlinear boundary integral equation (BIE) obtained by reformulation the nonlinear boundary value problem (BVP). We give a simple alternative to the standard collocation method for the nonlinear BIE. This method consists of one conventional linear system and another coupled linear system resulting from an auxiliary BIE which is obtained by differentiating both side of the nonlinear interior integral equations. We obtain an analogue BIE through the perturbation of the fundamental solution of Laplace's equation. We procure the super-convergence of approximate solutions.

  • PDF

Modeling of Velocity Term in 3D Moving Conductor Problems by the Indirect BIEM (간접경계적분법에 의한 3차원 운동도체 문제에서의 속도항 모델링)

  • Kim, Dong-Hun;Park, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.113-115
    • /
    • 1998
  • This paper presents the indirect boundary integral equation method(BIEM) to analyze 3D moving conductor problem. Instead of an artificial upwind algothm, the proposed method uses a fundamental Green's function which is a particular solution of diffusion equation. Therefore, this method yields a stable and accurate solution regardless of the Peclet number. The indirect BIEM is compared with 3D upwind FEM for a numerical model which has analytic solutions.

  • PDF

The Conveyer System Drived by a Single-Sided Linear Induction Motor (편측식 선형 유도전동기를 구동원으로 한 반송시스템)

  • 임달호;이철직;조윤현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.5
    • /
    • pp.445-452
    • /
    • 1990
  • In order to design a conveyer system which is driven by short primary single sided linear induction motors (SLIM), the thrust force characteristics of SLIM have been calculated from the fundamental equation based on Maxwell's electromagnetic equation and by varying the various design parameters. A conveyer system of moving secondary has been constructed using the design values obtained by the simulation and these values are compared with the experimental values. The control method of the conveyer system is also proposed.

HEAT EQUATION WITH A GEOMETRIC ROUGH PATH POTENTIAL IN ONE SPACE DIMENSION: EXISTENCE AND REGULARITY OF SOLUTION

  • Kim, Hyun-Jung;Lototsky, Sergey V.
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.757-769
    • /
    • 2019
  • A solution of the heat equation with a distribution-valued potential is constructed by regularization. When the potential is the generalized derivative of a $H{\ddot{o}}lder$ continuous function, regularity of the resulting solution is in line with the standard parabolic theory.

A Study of Comparison with Free Wave Number Between a New Cylinderical Wave Equation and the Wave Equation by Junger and Feit (자유파수를 이용한 새로운 실린더 운동방정식과 Junger and Feit의 실린더 운동방정식의 비교연구)

  • Jo, Heung-Kuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.47-51
    • /
    • 1996
  • The Cylindrical Shell Equation is one of the fundamental tools in the study of the noise analysis in the cylindrical shell. Therefore, lot of the acousticians induced many cylindrical shell motion equations.[1] In the Reference[6], we introduced the newly induced cylindrical Shell Equation and Junger and Feit's shell equation[5], and computed the free wave number with the linear Equation with the supposed solution, in the case of the free motion of the shell. In this paper, we compared above cylindrical shell equations by using dispersion curve of free wave number and we describe the physical mean for the dispersion curve with ring-frequency and ring-extention-frequency. With this result, we proves the useful of a newly induced cylindrical shell equation and we can analyse the Structure-Borne Sound of the shell with this equation in the application.

  • PDF