• 제목/요약/키워드: fundamental equation

검색결과 452건 처리시간 0.022초

A class of conditional analytic Feynman integrals

  • Chung, Dong-Myung;Kang, Si-Ho;Kang, Soon-Ja
    • 대한수학회논문집
    • /
    • 제11권1호
    • /
    • pp.175-190
    • /
    • 1996
  • In this paper we establish the existence of the conditional Feynman integral of certain functions which are not in the Banach algebra S of functions on Wiener space which are a kind of stochastic Fourier transform of complex Borel measures on $L^2[a, b]$. This result is used to provide the fundamental solution for the Schr$\ddot{o}$dinger equation for the forced harmonic potential.

  • PDF

CF4, CH4, Ar 혼합기체의 전리와 부착계수 (Ionization and Attachment Coefficients in CF4, CH4, Ar Mixtures Gas)

  • 김상남
    • 전기학회논문지P
    • /
    • 제61권1호
    • /
    • pp.13-17
    • /
    • 2012
  • Ionization and Attachment Coefficients in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CH_4$, $CF_4$ and Ar, were used. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures.

Free vibration analysis of combined system with variable cross section in tall buildings

  • Jahanshahia, Mohammad Reza;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • 제42권5호
    • /
    • pp.715-728
    • /
    • 2012
  • This paper deals with determining the fundamental frequency of tall buildings that consist of framed tube, shear core, belt truss and outrigger systems in which the framed tube and shear core vary in size along the height of the structure. The effect of belt truss and outrigger system is modeled as a concentrated rotational linear spring at the belt truss and outrigger system location. Many cantilevered tall structures can be treated as cantilevered beams with variable cross-section in free vibration analysis. In this paper, the continuous approach, in which a tall building is replaced by an idealized cantilever continuum representing the structural characteristics, is employed and by using energy method and Hamilton's variational principle, the governing equation for free vibration of tall building with variable distributed mass and stiffness is obtained. The general solution of governing equation is obtained by making appropriate selection for mass and stiffness distribution functions. By applying the separation of variables method for time and space, the governing partial differential equation of motion is reduced to an ordinary differential equation with variable coefficients with the assumption that the transverse displacement is harmonic. A power-series solution representing the mode shape function of tall building is used. Applying boundary conditions yields the boundary value problem; the frequency equation is established and solved through a numerical process to determine the natural frequencies. Computer program has been developed in Matlab (R2009b, Version 7.9.0.529, Mathworks Inc., California, USA). A numerical example has been solved to demonstrate the reliability of this method. The results of the proposed mathematical model give a good understanding of the structure's dynamic characteristics; it is easy to use, yet reasonably accurate and suitable for quick evaluations during the preliminary design stages.

Bending of steel fibers on partly supported elastic foundation

  • Hu, Xiao Dong;Day, Robert;Dux, Peter
    • Structural Engineering and Mechanics
    • /
    • 제12권6호
    • /
    • pp.657-668
    • /
    • 2001
  • Fiber reinforced cementitious composites are nowadays widely applied in civil engineering. The postcracking performance of this material depends on the interaction between a steel fiber, which is obliquely across a crack, and its surrounding matrix. While the partly debonded steel fiber is subjected to pulling out from the matrix and simultaneously subjected to transverse force, it may be modelled as a Bernoulli-Euler beam partly supported on an elastic foundation with non-linearly varying modulus. The fiber bridging the crack may be cut into two parts to simplify the problem (Leung and Li 1992). To obtain the transverse displacement at the cut end of the fiber (Fig. 1), it is convenient to directly solve the corresponding differential equation. At the first glance, it is a classical beam on foundation problem. However, the differential equation is not analytically solvable due to the non-linear distribution of the foundation stiffness. Moreover, since the second order deformation effect is included, the boundary conditions become complex and hence conventional numerical tools such as the spline or difference methods may not be sufficient. In this study, moment equilibrium is the basis for formulation of the fundamental differential equation for the beam (Timoshenko 1956). For the cantilever part of the beam, direct integration is performed. For the non-linearly supported part, a transformation is carried out to reduce the higher order differential equation into one order simultaneous equations. The Runge-Kutta technique is employed for the solution within the boundary domain. Finally, multi-dimensional optimization approaches are carefully tested and applied to find the boundary values that are of interest. The numerical solution procedure is demonstrated to be stable and convergent.

집속체 유동계의 모델링과 운동 특성해석 (Modeling and Analysis of Dynamic Characteristic for Bundle Fluid System)

  • 김종성;허유;김윤혁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1643-1646
    • /
    • 2003
  • Drawing is a mechanical operation that attenuates thick material to an appropriate thickness for the next processing or end usage. When the input material has the form of a bundle or bundles made of very thin and long shaped wire or fibers, this attenuation operation is called "bundle drawing" or "drafting" Drafting is being used widely in manufacturing staple yarns. which is indispensable for the textile industry. However, the bundle processed by this operation undertake more or less defects in the evenness of linear density. Such irregularities cause many problems not only for the product quality but also for the efficiency of the next successive processes. Since long there have been many researches tying to find out factors affecting the irregularity of linear desity, to obtain optimal drafting conditions, to develop efficient measuring and analysis methods of linear density of bundle, etc., but there exists yet no fundamental equation describing the dynamic behavior of the flowing bundle during processing. In this research a mathematical model for the dynamic behavior of the bundle fluid is to be set up on the basis of general physical lows representing physical variables, i.e. linear density and velocity as the dynamic state of bundle. The conservation of mass and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. On the basis of the simplified model, the simulation was performed and the results could be confirmed by the experiments under various conditions.

  • PDF

자동차연료 기준강화에 따른 대기오염물질 배출량 저감효과 (A Study on Reduction Effects of Air Pollutant Emissions by Automotive Fuel Standard Reinforcement)

  • 임철수;홍지형;김정수;이종태;임윤성;김상규;전상진
    • 한국대기환경학회지
    • /
    • 제27권2호
    • /
    • pp.181-190
    • /
    • 2011
  • The air pollutants from vehicle exhaust gas are affected by many factors including fuel qualities, engine and vehicle technologies, driving patterns. In particular, fuel qualities and after-treatment devices could directly affect the emission level of pollutants. The pollutant reduction characteristics that caused by enforced fuel quality standard were analyzed. Three types of test fuel were selected in accordance with Korean automotive fuel standard in 2006, 2009, 2012 and used for vehicle emission test in chassis dynamometer. European COPERT correction equation of fuel impact was considered as reference information to quantify the vehicle emission test results. The contribution rates of exhaust emission by COPERT correction equation showed that aromatic compounds and oxygen contents in gasoline fuel was most important. In case of diesel fuel, cetane index and polycyclic aromatic compounds accounted for the greater part. The exhaust emission effects by COPERT correction equation revealed that CO and VOC was increased 0.86%, 1.57% respectively in after 2009 gasoline when compared to before 2009 gasoline fuel. In case of light-duty diesel vehicle CO, VOC and PM were decreased in range of 3~7%. The result from this study could be provided for developing future fuel standards and be used to fundamental information for Korean clean air act.

Effects of deformation of elastic constraints on free vibration characteristics of cantilever Bernoulli-Euler beams

  • Wang, Tong;He, Tao;Li, Hongjing
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.1139-1153
    • /
    • 2016
  • Elastic constraints are usually simplified as "spring forces" exerted on beam ends without considering the "spring deformation". The partial differential equation governing the free vibrations of a cantilever Bernoulli-Euler beam considering the deformation of elastic constraints is firstly established, and is nondimensionalized to obtain two dimensionless factors, $k_v$ and $k_r$, describing the effects of elastically vertical and rotational end constraints, respectively. Then the frequency equation for the above Bernoulli-Euler beam model is derived using the method of separation of variables. A numerical analysis method is proposed to solve the transcendental frequency equation for the continuous change of the frequency with $k_v$ and $k_r$. Then the mode shape functions are given. Finally, effects of $k_v$ and $k_r$ on free vibration characteristics of the beam with different slenderness ratios are calculated and analyzed. The results indicate that the effects of $k_v$ are larger on higher-order free vibration characteristics than on lower-order ones, and the impact strength decreases with slenderness ratio. Under a relatively larger slenderness ratio, the effects of $k_v$ can be neglected for the fundamental frequency characteristics, while cannot for higher-order ones. However, the effects of $k_r$ are large on both higher- and lower-order free vibration characteristics, and cannot be neglected no matter the slenderness ratio is large or small.

Envelope-Function Equation and Motion of Wave Packet in a Semiconductor Superlattice Structure

  • Kim, Byoung-Whi;Jun, Young-Il;Jung, Hee-Bum
    • ETRI Journal
    • /
    • 제21권1호
    • /
    • pp.1-27
    • /
    • 1999
  • We present a new description of envelope-function equation of the superlattice (SL). The SL wave function and corresponding effective-mass equation are formulated in terms of a linear combination of Bloch states of the constituent material with smaller band gap. In this envelope-function formalism, we review the fundamental concept on the motion of a wave packet in the SL structure subjected to steady and uniform electric fields F. The review confirms that the average of SL crystal momentums K = ($k_x,k_y,q$), where ($K_x,k_y$) are bulk inplane wave vectors and q SL wave vector, included in a wave packet satisfies the equation of motion = $_0+Ft/h$; and that the velocity and acceleration theorems provide the same type of group velocity and definition of the effective mass tensor, respectively, as in the Bulk. Finally, Schlosser and Marcus's method for the band theory of metals has been by Altarelli to include the interface-matching condition in the variational calculation for the SL structure in the multi-band envelope-function approximation. We re-examine this procedure more thoroughly and present variational equations in both general and reduced forms for SLs, which agrees in form with the proposed envelope-function formalism. As an illustration of the application of the present work and also for a brief investigation of effects of band-parameter difference on the subband energy structure, we calculate by the proposed variational method energies of non-strained $GaAs/Al_{0.32}Ga_{0.68}As$ and strained $In_{0.63}Ga_{0.37}As/In_{0.73}Ga_{0.27}As_{0.58}P_{0.42}SLs$ with well/barrier widths of $60{\AA}/500{\AA}$ and 30${\AA}/30{\AA}$, respectively.

  • PDF

소결금속층(燒結金屬層)에서의 압력강화(壓力降下)에 관한 연구(硏究) (A Study on Pressure Drop Through The Porous Metal)

  • 오수철
    • 태양에너지
    • /
    • 제12권2호
    • /
    • pp.43-50
    • /
    • 1992
  • 공기(空氣)가 통과(通過)하는 소결금속(燒結金屬)에서의 압력손실(壓力損失)에 대한 기초(基礎) 지식(知識)을 얻기 위하여 실험적(實驗的)으로 연구(硏究)를 수행(遂行)하여, 소결금속(燒結金屬)의 공극율(空隙率)과 소결금속(燒結金屬)을 통과(通過)하는 공기(空氣)의 유속(流速)이 압력손실(壓力損失)에 미치는 영향(影響)을 고찰(考察)하고, 또 본(本) 실험(實驗) 결과(結果)를 비소결금속(非燒結金屬)에서의 압력손실(壓力損失)에 대한 대표적(代表的)인 Ergun의 식(式)과 마찰계수(摩擦係數)의 관점(觀點)에서 비교(比較)하였다. 본(本) 연구결과(硏究結果), 소결금속(燒結金屬)에서의 압력손실(壓力損失)은 유속(流速)이 증가(增加)할 수록 증대(增大)하며, 또 동일 유속(流速)에서는 공극율(空隙率)이 감소(減少)(입자직경(粒子直徑)이 감소(減少))할 수록 증대(增大)한다. 특히 본(本) 실험(實驗) 결과(結果)를 소결금속(燒結金屬)의 두께와 직경(直徑) 및 입자직경(粒子直徑)의 무차원수(無次元數)들로 표현되는 무차원(無次元) 실험식(實驗式)으로 유도(誘導)하였으며, 이 실험식(實驗式)은 본(本) 연구결과(硏究結果)와 ${\pm}15%$ 범위에서 일치하고 있다.

  • PDF

The Prominence of Financial Considerations on Housing Investors' Purchase Decisions

  • DANANJOYO, Radyan;CAHAYA, Fitra Roman;RIYADH, Hosam Alden
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권12호
    • /
    • pp.869-875
    • /
    • 2020
  • As a basic element for sustainable development, the residential housing industry is vital and fundamental for every country in the world. Therefore, this study examines the impacts of financial considerations on house purchase decisions by housing investors in Auckland, New Zealand. 110 completed questionnaires were statistically analyzed. For testing the proposed hypotheses, Structural Equation Modelling (SEM) was used. The results show that house prices, income, and credit accessibility significantly influence housing investors' purchase decisions in a positive direction. It appears that more expensive houses offer more promising returns such that housing investors having higher levels of income and access to loans are brave enough to invest in such houses. This study aims to present the key factors influencing house purchase decisions from the viewpoint of housing investors as fundamental groups of stakeholders in the property market, which is rarely examined in previous studies. The implication of this study is to provide guidelines for housing regulators in New Zealand to develop affordable housing prices through the availability of land banks. This study also offers practical contributions to housing investors, particularly by providing key guidelines to make effective investment decisions.