• Title/Summary/Keyword: functionally graded plate

Search Result 379, Processing Time 0.025 seconds

Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories

  • Yahia, Sihame Ait;Atmane, Hassen Ait;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1143-1165
    • /
    • 2015
  • In this work, various higher-order shear deformation plate theories for wave propagation in functionally graded plates are developed. Due to porosities, possibly occurring inside functionally graded materials (FGMs) during fabrication, it is therefore necessary to consider the wave propagation in plates having porosities in this study. The developed refined plate theories have fewer number of unknowns and equations of motion than the first-order shear deformation theory, but accounts for the transverse shear deformation effects without requiring shear correction factors. The rule of mixture is modified to describe and approximate material properties of the functionally graded plates with porosity phases. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions and porosity volume fraction on wave propagation of functionally graded plate are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

Elasticity solutions for a uniformly loaded annular plate of functionally graded materials

  • Yang, B.;Ding, H.J.;Chen, W.Q.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.4
    • /
    • pp.501-512
    • /
    • 2008
  • The axisymmetric problem of a functionally graded annular plate is considered by extending the theory of functionally graded materials plates suggested by Mian and Spencer (1998). In particular, their expansion formula for displacements is adopted and the hypothesis that the material parameters can vary along the thickness direction in an arbitrary continuous fashion is retained. However, their analysis is extended here in two aspects. First, the material is assumed to be transversely isotropic, rather than isotropic. Second, the plate is no longer tractions-free on the top and bottom surfaces, but subject to uniform loads applied on the surfaces. The elasticity solutions are given for a uniformly loaded annular plate of functionally graded materials for a total of six different boundary conditions. Numerical results are given for a simply supported functionally graded annular plate, and good agreement with those by the classical plate theory is obtained.

Buckling analysis of sandwich plates with functionally graded porous layers using hyperbolic shear displacement model

  • Hadji, Lazreg
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.19-30
    • /
    • 2021
  • This study presents buckling analysis of a simply supported sandwich plate with functionally graded porous layers. In the kinematic relation of the plate, a hyperbolic shear displacement model is used. The governing equations of the problem are derived by using the principle of virtual work. In the solution of the governing equations, the Navier procedure is implemented. In the porosity effect, four different porosity types are used for functionally graded sandwich layers. In the numerical examples, the effects of the porosity parameters, porosity types and geometry parameters on the critical buckling of the functionally graded sandwich plates are investigated.

An analytical approach for buckling of functionally graded plates

  • Daouadji, Tahar Hassaine;Adim, Belkacem
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.141-169
    • /
    • 2016
  • In this paper, an efficient and simple refined theory is presented for buckling analysis of functionally graded plates. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The mechanical properties of functionally graded material are assumed to vary according to a power law distribution of the volume fraction of the constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solutions of rectangular plates are obtained. Comparison studies are performed to verify the validity of present results. The effects of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are investigated and discussed.

Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock

  • Xiong, Qi-lin;Tian, Xin
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.187-196
    • /
    • 2017
  • In this work, transient thermo-piezo-elastic responses of an infinite functionally graded piezoelectric (FGPE) plate whose upper surface suffers time-dependent thermal shock are investigated in the context of different thermo-piezo-elastic theories. The thermal and mechanical properties of functionally graded piezoelectric plate under consideration are expressed as power functions of plate thickness variable. The solution of problem is obtained by solving the corresponding finite element governing equations in time domain directly. Transient thermo-piezo-elastic responses of the FGPE plate, including temperature, stress, displacement, electric intensity and electric potential are presented graphically and analyzed carefully to show multi-field coupling behaviors between them. In addition, the effects of functionally graded parameters on transient thermo-piezo-elastic responses are also investigated to provide a theoretical basis for the application of the FGPE materials.

An efficient shear deformation theory for wave propagation of functionally graded material plates

  • Boukhari, Ahmed;Atmane, Hassen Ait;Tounsi, Abdelouahed;Adda Bedia, E.A.;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.837-859
    • /
    • 2016
  • An efficient shear deformation theory is developed for wave propagation analysis of an infinite functionally graded plate in the presence of thermal environments. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The thermal effects and temperature-dependent material properties are both taken into account. The temperature field is assumed to be a uniform distribution over the plate surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle and the physical neutral surface concept. There is no stretching.bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions and temperature on wave propagation of functionally graded plate are discussed in detail. It can be concluded that the present theory is not only accurate but also simple in predicting the wave propagation characteristics in the functionally graded plate. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers

  • Arefi, M.
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1345-1362
    • /
    • 2015
  • The present paper deals with the free vibration analysis of the functionally graded solid and annular circular plates with two functionally graded piezoelectric layers at top and bottom subjected to an electric field. Classical plate theory (CPT) is used for description of the all deformation components based on a symmetric distribution. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness direction of the plate. The properties of plate core can vary from metal at bottom to ceramic at top. The effect of non homogeneous index of functionally graded and functionally graded piezoelectric sections can be considered on the results of the system. $1^{st}$ and $2^{nd}$ modes of natural frequencies of the system have been evaluated for both solid and annular circular plates, individually.

Nonlinear responses of an arbitrary FGP circular plate resting on the Winkler-Pasternak foundation

  • Arefi, Mohammad;Allam, M.N.M.
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.81-100
    • /
    • 2015
  • This paper presents nonlinear analysis of an arbitrary functionally graded circular plate integrated with two functionally graded piezoelectric layers resting on the Winkler-Pasternak foundation. Geometric nonlinearity is considered in the strain-displacement relation based on the Von-Karman assumption. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness of the plate based on a power function. Electric potential is assumed as a quadratic function along the thickness direction. After derivation of general nonlinear equations, as an instance, numerical results of a functionally graded material integrated with functionally graded piezoelectric material obeying two different functionalities is investigated. The effect of different parameters such as parameters of foundation, non homogenous index and boundary conditions can be investigated on the mechanical and electrical results of the system. A comprehensive comparison between linear and nonlinear responses of the system presents necessity of this study. Furthermore, the obtained results can be validated by using previous linear and nonlinear analyses after removing the effect of foundation.

Nonlinear cylindrical bending analysis of E-FGM plates with variable thickness

  • Kaci, Abdelhakim;Belakhdar, Khalil;Tounsi, Abdelouahed;Bedia, El Abbes Adda
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.339-356
    • /
    • 2014
  • This paper presents a study of the nonlinear cylindrical bending of an exponential functionally graded plate (simply called E-FG) with variable thickness. The plate is subjected to uniform pressure loading and his geometric nonlinearity is introduced in the strain-displacement equations based on Von-Karman assumptions. The material properties of functionally graded plates, except the Poisson's ratio, are assumed to vary continuously through the thickness of the plate in accordance with the exponential law distribution; and the solution is obtained using Hamilton's principle for constant plate thickness. In order to analyze functionally graded plate with variable thickness, a numerical solution using finite difference method is used, where parabolic variation of the plate thickness is studied. The results for E-FG plates are given in dimensionless graphical forms; and the effects of material and geometric properties on displacements and normal stresses through the thickness are determined.

Thermal stability of functionally graded sandwich plates using a simple shear deformation theory

  • Bouderba, Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.397-422
    • /
    • 2016
  • In the present work, a simple first-order shear deformation theory is developed and validated for a variety of numerical examples of the thermal buckling response of functionally graded sandwich plates with various boundary conditions. Contrary to the conventional first-order shear deformation theory, the present first-order shear deformation theory involves only four unknowns and has strong similarities with the classical plate theory in many aspects such as governing equations of motion, and stress resultant expressions. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are considered as uniform, linear and non-linear temperature rises within the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates. Moreover, numerical results prove that the present simple first-order shear deformation theory can achieve the same accuracy of the existing conventional first-order shear deformation theory which has more number of unknowns.