• Title/Summary/Keyword: functionally graded beam

Search Result 337, Processing Time 0.023 seconds

A new higher-order shear and normal deformation theory for functionally graded sandwich beams

  • Bennai, Riadh;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.521-546
    • /
    • 2015
  • A new refined hyperbolic shear and normal deformation beam theory is developed to study the free vibration and buckling of functionally graded (FG) sandwich beams under various boundary conditions. The effects of transverse shear strains as well as the transverse normal strain are taken into account. Material properties of the sandwich beam faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending, free vibration and buckling analyses are obtained for simply supported sandwich beams. Illustrative examples are given to show the effects of varying gradients, thickness stretching, boundary conditions, and thickness to length ratios on the bending, free vibration and buckling of functionally graded sandwich beams.

Influence of sine material gradients on delamination in multilayered beams

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.8 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • The present paper deals with delamination fracture analyses of the multilayered functionally graded non-linear elastic Symmetric Split Beam (SSB) configurations. The material is functionally graded in both width and height directions in each layer. It is assumed that the material properties are distributed non-symmetrically with respect to the centroidal axes of the beam cross-section. Sine laws are used to describe the continuous variation of the material properties in the cross-sections of the layers. The delamination fracture is analyzed in terms of the strain energy release rate by considering the balance of the energy. A comparison with the J-integral is performed for verification. The solution derived is used for parametric analyses of the delamination fracture behavior of the multilayered functionally graded SSB in order to evaluate the effects of the sine gradients of the three material properties in the width and height directions of the layers and the location of the crack along the beam width on the strain energy release rate. The solution obtained is valid for two-dimensional functionally graded non-linear elastic SSB configurations which are made of an arbitrary number of lengthwise vertical layers. A delamination crack is located arbitrary between layers. Thus, the two crack arms have different widths. Besides, the layers have individual widths and material properties.

Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study

  • AlSaid-Alwan, Hiyam Hazim Saeed;Avcar, Mehmet
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.285-292
    • /
    • 2020
  • In engineering structures, to having the projected structure to serve all the engineering purposes, the theory to be used during the modeling stage is also of great importance. In the present work, an analytical solution of the free vibration of the beam composed of functionally graded materials (FGMs) is presented utilizing different beam theories. The comparison of supposed beam theory for free vibration of functionally graded (FG) beam is examined. For this aim, Euler-Bernoulli, Rayleigh, Shear, and Timoshenko beam theories are employed. The functionally graded material properties are assumed to vary continuously through the thickness direction of the beam with respect to the volume fraction of constituents. The governing equations of free vibration of FG beams are derived in the frameworks of four beam theories. Resulting equations are solved versus simply supported boundary conditions, analytically. To verify the results, comparisons are carried out with the available results. Parametrical studies are performed for discussing the effects of supposed beam theory, the variation of beam characteristics, and FGM properties on the free vibration of beams. In conclusion, it is found that the interaction between FGM properties and the supposed beam theory is of significance in terms of free vibration of the beams and that different beam theories need to be used depending on the characteristics of the beam in question.

Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams

  • Rahmani, O.;Refaeinejad, V.;Hosseini, S.A.H.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.339-350
    • /
    • 2017
  • In this paper, various nonlocal higher-order shear deformation beam theories that consider the size dependent effects in Functionally Graded Material (FGM) beam are examined. The presented theories fulfill the zero traction boundary conditions on the top and bottom surface of the beam and a shear correction factor is not required. Hamilton's principle is used to derive equation of motion as well as related boundary condition. The Navier solution is applied to solve the simply supported boundary conditions and exact formulas are proposed for the bending and static buckling. A parametric study is also included to investigate the effect of gradient index, length scale parameter and length-to-thickness ratio (aspect ratio) on the bending and the static buckling characteristics of FG nanobeams.

Three-dimensional modelling of functionally graded beams using Saint-Venant's beam theory

  • Khebizi, Mourad;Guenfoud, Hamza;Guenfoud, Mohamed;El Fatmi, Rached
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.257-273
    • /
    • 2019
  • In this paper, the mechanical behaviour of functionally graded material beams is studied using the 3D Saint-Venant's theory, in which the section is free to warp in and out of its plane (Poisson's effects and out-of-plane warpings). The material properties of the FGM beam are distributed continuously through the thickness by several distributions, such as power-law distribution, exponential distribution, Mori-Tanaka schema and sigmoid distribution. The proposed method has been applied to study a simply supported FGM beam. The numerical results obtained are compared to other models in the literature, which show a high performance of the 3D exact theory used to describe the stress and strain fields in FGM beams.

On propagation of elastic waves in an embedded sigmoid functionally graded curved beam

  • Zhou, Linyun;Moradi, Zohre;Al-Tamimi, Haneen M.;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.17-31
    • /
    • 2022
  • This investigation studies the characteristics of wave dispersion in sigmoid functionally graded (SFG) curved beams lying on an elastic substrate for the first time. Homogenization process was performed with the help of sigmoid function and two power laws. Moreover, various materials such as Zirconia, Alumina, Monel and Nickel steel were explored as curved beams materials. In addition, curved beams were rested on an elastic substrate which was modelled based on Winkler-Pasternak foundation. The SFG curved beams' governing equations were derived according to Euler-Bernoulli curved beam theory which is known as classic beam theory and Hamilton's principle. The resulted governing equations were solved via an analytical method. In order to validate the utilized method, the obtained outcomes were compared with other researches. Finally, the influences of various parameters, including wave number, opening angle, gradient index, Winkler coefficient and Pasternak coefficient were evaluated and indicated in the form of diagrams.

Exact analysis of bi-directional functionally graded beams with arbitrary boundary conditions via the symplectic approach

  • Zhao, Li;Zhu, Jun;Wen, Xiao D.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.101-122
    • /
    • 2016
  • Elasticity solutions for bi-directional functionally graded beams subjected to arbitrary lateral loads are conducted, with emphasis on the end effects. The material is considered macroscopically isotropic, with Young's modulus varying exponentially in both axial and thickness directions, while Poisson's ratio remaining constant. In order to obtain an exact analysis of stress and displacement fields, the symplectic analysis based on Hamiltonian state space approach is employed. The capability of the symplectic framework for exact analysis of bi-directional functionally graded beams has been validated by comparing numerical results with corresponding ones in open literature. Numerical results are provided to demonstrate the influences of the material gradations on localized stress distributions. Thus, the material properties of the bi-directional functionally graded beam can be tailored for the potential practical purpose by choosing suitable graded indices.

A novel first order refined shear-deformation beam theory for vibration and buckling analysis of continuously graded beams

  • Bekhadda, Ahmed;Cheikh, Abdelmadjid;Bensaid, Ismail;Hadjoui, Abdelhamid;Daikh, Ahmed A.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.189-206
    • /
    • 2019
  • In this work, a novel first-order shear deformation beam theory is applied to explore the vibration and buckling characteristics of thick functionally graded beams. The material properties are assumed to vary across the thickness direction in a graded form and are estimated by a power-law model. A Fourier series-based solution procedure is implemented to solve the governing equation derived from Hamilton's principle. The obtained results of natural frequencies and buckling loads of functionally graded beam are checked with those supplied in the literature and demonstrate good achievement. Influences of several parameters such as power law index, beam geometrical parameters, modulus ratio and axial load on dynamic and buckling behaviors of FGP beams are all discussed.

Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation

  • Benahmed, Abdelillah;Fahsi, Bouazza;Benzair, Abdelnour;Zidour, Mohamed;Bourada, Fouad;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.457-466
    • /
    • 2019
  • This paper presents an efficient higher-order nonlocal beam theory for the Critical buckling, of functionally graded (FG) nanobeams with porosities that may possibly occur inside the functionally graded materials (FG) during their fabrication, the nonlocal elastic behavior is described by the differential constitutive model of Eringen. The material properties of (FG) nanobeams with porosities are assumed to vary through the thickness according to a power law. The governing equations of the functionally graded nanobeams with porosities are derived by employing Hamilton's principle. Analytical solutions are presented for a simply supported FG nanobeam with porosities. The validity of this theory is studied by comparing some of the present results with other higher-order theories reported in the literature, Illustrative examples are given also to show the effects of porosity volume fraction, and thickness to length ratios on the critical buckling of the FG beams.

Vibration and damping behaviors of symmetric layered functional graded sandwich beams

  • Demir, Ersin
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.771-780
    • /
    • 2017
  • In this study, free vibration and damping behaviors of multilayered symmetric sandwich beams and single layered beams made of Functionally Graded Materials were investigated, experimentally and numerically. The beams were composed of Aluminum and Silicon Carbide powders and they were produced by powder metallurgy. Three beam models were used in the experiments. The first model was isotropic, homogeneous beams produced by using different mixing ratios. In the second model, the pure metal layers were taken in the middle of the beam and the weight fraction of the ceramic powder of each layer was increased towards to the surfaces of the beam in the thickness direction. In the third model, the pure metal layers were taken in the surfaces of the beam and the weight fraction of the ceramic powder of each layer was increased towards to middle of the beam. Then the vibration tests were performed. Consequently, the effects of stacking sequence and mixing ratio on the natural frequencies and damping responses of functionally graded beams were discussed from the results obtained. Furthermore, the results obtained from the tests were supported with a finite-element-based commercial program, and it was found to be in harmony.