• 제목/요약/키워드: functionalized surface

검색결과 247건 처리시간 0.026초

Roll-to-Roll (R2R) Fabrication of Micro Pillar Array for Biomimetic Functionalization of Surface

  • Jeon, Deok-Jin;Lee, Jun-Young;Yeo, Jong-Souk
    • Applied Science and Convergence Technology
    • /
    • 제23권1호
    • /
    • pp.54-59
    • /
    • 2014
  • The roll-to-roll (R2R) fabrication method to make micro-scale pillar arrays for biomimetic functionalization of surfaces is presented. Inspired by the micro-structure of plants in nature, a surface with a synthetic micro-scale pillar array is fabricated via maskless photolithography. After the surface is SAM (self-assembled monolayer) coated with trichlorosilane in a vacuum desiccator, it displays a hydrophobic property even in R2R replicas of original substrate, whose properties are further characterized using various pitches and diameters. In order to perform a comparison between the original micro-pattern and its replicas, surface morphology was analyzed using scanning electron microscopy and wetting characteristics were measured via a contact angle measurement tool with a $10{\mu}L$ water droplet. Efficient roll-to-roll imprinting for a biomimetic functionalized surface has the potential for use in many fields ranging from water repelling and self-cleaning to microfluidic chips.

Surface-Induced Self-Assembly of Conjugated Organic Molecules for High-Performance Organic Thin Film Transistors

  • Cho, Kil-Won
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.162-163
    • /
    • 2006
  • Control over surface induced self-assembly of electronically active pi-conjugated molecules provides great opportunities to fine-tune and optimize their electrical properties in organic electronics. In this study, with the aim of enhancing the electrical performances by promoting surface induced two-dimensional self-assembly in representative pi-conjugated molecules such as poly (3-hexylthiophene) and pentacene, we have controlled the intermolecular interaction at the interface between pi-conjugated molecules and substrate by using self-assembled monolayers functionalized with various groups. We will discuss the dependency of pi-conjugated molecules on the specific properties of the substrate surface and the effect of surface induced self-assembly on electrical performances in organic transistors.

  • PDF

Functionalization of Au surfaces with 4-(carboxymethyl)aniline and amine-terminated dendrimers for enhanced surface density of antibodies on immunosensor Au chips

  • Lee, Yongwoon;Ju, Youngwon;Kim, Joohoon
    • 분석과학
    • /
    • 제30권1호
    • /
    • pp.49-56
    • /
    • 2017
  • Here, we demonstrate surface functionalization of Au chips with 4-(carboxymethyl)aniline (CMA) and amine-terminated polyamidoamine (PAMAM) dendrimers for immobilization of antibodies on the Au surfaces. Use of the functionalization strategy led to high surface density of the immobilized antibodies on the Au chips. Specifically, we found that the functionalization of Au chips with CMA and amine-terminated $6^{th}$ generation PAMAM dendrimers allowed immobilization of immunoglobulin (IgG) antibodies with high surface density, which is 5 times higher than that obtained with Au surfaces functionalized with CMA and ethylenediamine.

Catechol-mediated Functional Coatings of Polymer and Inorganic Nanostructures

  • 김지선;박재윤;손호연;이해신;남윤성
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.66-67
    • /
    • 2012
  • As polymer coatings of nano-structured surface become significant to obtain functionalized materials, catechol derived from a mussel protein has attracted increasing attention for its universal adhesiveness. In addition to the unique adhesion property, its reducing ability of metal ions during oxidative polymerization to polydopamine (pD) widely expands the application of catechol molecules in the field of surface modification. In this study, we present the catechol conjugated smart polymer coatings for regulating surface properties such as wettability and anti-fouling effects. In additino, the in situ silver coating of electrospun polymer nanofibers using a silver-catechol redox reaction is presented as a simple method to produce metal nanostructures.

  • PDF

표면처리된 탄소나노튜브의 질소 및 산소관능기 도입에 따른 전기화학적 특성 (Combined effect of nitrogen- and oxygen functional groups on electrochemical performance of surface treated multi-walled carbon nanotubes)

  • 김지일;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.214.1-214.1
    • /
    • 2011
  • In this work, the electrochemical properties of the surface treated multi-walled carbon nanotubes (MWNTs) are investigated for supercapacitors. Nitrogen- and oxygen functional groups containing MWNTs are prepared by nitrogen precursors and acidic treatment, respectively. The surface properties of the MWNTs are confirmed by X-ray photoelectron spectroscopy (XPS) and Zeta-potential measurements. The electrochemical properties of the MWNTs are investigated by cyclic voltammetry, impedance spectra, and charge-discharge cycling performance in 1 M $H_2SO_4$ at room temperature. As a result, these functionalized MWNTs lead to an increase in the specific capacitance as compared with the pristine MWNTs. It proposes that the pyridinic and pyridinic-N-oxides nitrogen species influence on the specific capacitance due to their positive charges, and thus an improved electron transfer at high current loads, since they are the most important functional groups affecting capacitive behaviors.

  • PDF

A NOVEL ANTI-MICROBIAL COLLOIDAL SILVER SYSTEM AND ITS APPLICATION FOR COSMETICS

  • Kim, Jin-Woong;Kim, Su-Jin;Han, Sang-Hoon;Chang, Ih-Seop;Kang, Hak-Hee;Lee, Ok-Sub
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.686-697
    • /
    • 2003
  • A new colloidal silver (Ag) system is present in which a fine colloidal Ag is in situ deposited onto functionalized porous poly (ethylene glycol dimethacrylate) (poly (EGDMA)) microspheres. The effectiveness of Ag deposition was investigated considering the surface characteristics of poly (EGDMA) microspheres. The result reported in this study illustrates that the control of surface area and surface functionality (in this study, a hydroxyl group) of poly (EGDMA) microspheres is an important factor that determines practically the degree of deposition of colloidal Ag. The x-ray analysis showed that Ag nanoparticles were dispersed evenly inner and outer surfaces and had a face center cubic (fee) phase. In the preservative efficacy test, the Ag-containing poly (EGDMA) microspheres had a powerful anti-bacterial activity, showing a high potential for a new preservative in cosmetic industry.

  • PDF

Mechanistic examination of pre-exfoliating confinement of surface-functionalized nanobeads within layered silicates

  • Lee, Sang-Soo;Khvan, Svetlana;Kim, Jun-Kyung
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.190-190
    • /
    • 2006
  • The approach used in present work allows achieving highly exfoliated state of layered silicate s through confinement of the charged nanobeads within the gallery of swollen pristine clay. The latter is principally promoted by ion exchange that involves polar functional groups on the surface of nanobeads and sodium cation in the interlayer gallery of layered silicates. Surface functionality of the nanobeads plays crucial role in establishment of strong interactions with silicate surface, and eventually, dispersion of individual silicate nanoplatelets.

  • PDF

Characterization of functionalized silicon surfaces and graphenes using synchrotron radiation PES

  • 황찬국
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.40-40
    • /
    • 2010
  • Employing synchrotron radiation based photoemission spectroscopy (PES) and scanning tunneling microscopy (STM), our group have investigated Si surfaces, various graphenes and molecular nanolayers. In this talk, I introduce recent results on the surface related systems. All experiments have been performed at the surface science beamlines, 3A2 and 7B1, in Pohang Accelerator Laboratory, where high resolution PES (HRPES) and angle resolved PES (ARPES) are available. Metals or molecules are adsorbed and sometimes extreme ultraviolet is irradiated onto surfaces to give them special functions. I show several examples for surface functionalzation and how to characterize solid surface using the analysis techniques. In particular, lots of ARPES and STM data are provided from graphenes, a strong candidate for replacing Si and conducting oxide currently used in many electronic and optical devices.

  • PDF

실리카의 이온성 액체 기능화가 메탈로센 담지촉매의 에틸렌 중합 거동에 미치는 영향 (Influence of Functionalization of Silica with Ionic Liquid on Ethylene Polymerization Behavior of Supported Metallocene)

  • 이정숙;이창일;고영수
    • 공업화학
    • /
    • 제27권1호
    • /
    • pp.86-91
    • /
    • 2016
  • Ionic liquid 기능화 및 메탈로센 촉매 담지를 위해 세 종류의 무정형 실리카와 SBA-15를 담체로 사용하였다. Ionic liquid가 표면 기능화된 실리카는 1,3-bis(cyanomethyl)imidazolium chloride의 염소 음이온과 실리카 표면의 OH 그룹 사이의 상호작용에 의해 합성되었다. 에틸렌 중합을 위해 ionic liquid가 기능화된 실리카에 메탈로센과 조촉매 methylaluminoxane(MAO)을 담지하였다. SBA-15와 비교하여 큰 기공 크기를 갖는 ionic liquid가 표면 기능화된 XPO-2412와 XPO-2410에 담지된 촉매는 기능화되지 않은 실리카에 담지된 촉매보다 높은 활성을 보였다. 그러나 SBA-15에 담지된 촉매는 ionic liquid의 표면 기능화 후에 활성이 감소하였다. 이는 ionic liquid와 메탈로센 촉매, 조촉매 MAO가 담지되면 기공의 크기가 크게 줄어들기 때문에 중합 시 에틸렌 모노머와 조촉매가 기공 내 촉매 활성점으로 확산하는데 제한을 받기 때문이다. 또한 실리카 표면의 OH 그룹의 농도 변화에 따른 촉매의 중합 활성에 대한 영향을 연구하였다. 무정형 실리카의 OH 그룹의 농도가 증가할수록 중합 활성도 증가하였으며 실리카에 담지된 촉매의 중합 활성은 ionic liquid 표면처리 후에도 유사한 경향을 보였다.

표면 기능화된 Micelle-Templated Silica 나노세공 내 메탈로센 담지 및 에틸렌 중합 (Immobilization Metallocene Inside Surface-functionalized Nanopore of Micelle-Templated Silica and its Ethylene Polymerization)

  • 이정숙;임진형;고영수
    • 폴리머
    • /
    • 제36권1호
    • /
    • pp.111-116
    • /
    • 2012
  • 메조포러스 물질의 표면을 post-synthesis grafting method를 통해 표면을 기능화시킨 후 $(n-BuCp)_2ZrCl_2$/methylaluminoxane(MAO)를 담지하여 에틸렌 중합을 실시하였다. 아민기와 시안기를 가지는 유기실란 $N$-[(3-trimethoxysilyl)propyl]ethylenediamine(2NS), 4-(triethoxysilyl)butyronitrile(1NCy), 1-(3-triethoxysilylpropyl)-2-imidazoline(2NIm)는 메조포러스 물질의 표면 기능화에 사용되었다. SBA-15/2NS/$(n-BuCp)_2ZrCl_2$촉매 담지시 MAO의 양이 증가할수록 Zr 함량은 감소하였고 Al 함량은 증가하였다. 에틸렌 중합 활성은 MAO의 양이 증가할수록 급격히 증가함을 볼 수 있었다. 담지시간이 6시간일 때 가장 높은 활성을 보였다. 유기실란의 종류에 따른 활성 차이는 SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ > SBA-15/2NIm/$(n-BuCp)_2ZrCl_2$ > SBA-15/1NCy/$(n-BuCp)_2ZrCl_2$ 순으로 감소하였다. 아민기를 두 개 갖는 2NS와 2NIm은 아민기를 하나 갖는 1NCy보다 $(n-BuCp)_2ZrCl_2$와 더 강하게 상호작용을 한다. 따라서 촉매 내 질소와 Zr함량이 증가할수록 활성은 증가하였다.