• Title/Summary/Keyword: functionalized heterocyclic compound

Search Result 2, Processing Time 0.018 seconds

Separation of Functionalized Heterocyclic Compounds by High Performance Liquid Chromatography(I) (고성능 액체 크로마토그래피에 의한 기능성 헤테로고리화합물의 분리(I))

  • Lee, Kwang-PilI;Cho, Yun Jin;Lee, Young Cheol
    • Analytical Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.408-417
    • /
    • 1997
  • Normal phase or reversed phase liquid chromatographic separation of some structural isomers of functionalized heterocyclic compounds has been carried out by using several different columns and various mobile phases. The optimal experimental conditions for separation of structural isomers were found on a ternary solvent system including alcohol as a modifier. This polar modifier is preferentially adsorbed onto strong adsorption site, leaving a more uniform population of weaker site that then serve to retain the sample. This 'deactivation' of the adsorbent leads to a number of improvements in subsequent separations. The optimal mobile phase system of separation were found on normal phase on structural isomers. Retention mechanism of normal phase system was also studied depending on adsorption strength between solute and stationary phase of column. However, retention factors of reversed phase system were found on hydrophobic interaction with solvophobic effect.

  • PDF

Separation of Functionalized Heterocyclic Compounds by High Performance Liquid Chromatography (II) (고성능 액체 크로마토그래피에 의한 기능성 헤테로 고리 화합물의 분리(II))

  • Cho, Yun Jin;Lee, Young Cheol;Lee, Kwang-PiII;Park, Keung-Shik
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.292-296
    • /
    • 1998
  • Normal phase or reversed phase liquid chromatographic separation of isoquinoline of heterocyclic compounds and structural isomers of external substituents, $COOCH_3$, CN and $CH_3$ has been carried out by using several different columns and various mobile phases. From this results, the order of elution of heterocyclic compounds appears to depend on the solvent effect with kinds of mobile phases. Retention mechanism of normal phase system for 2-methylindoline, 2-methylindole, benzoxazole and benzothiazole was also studied depending on adsorption strength between solute and stationary phase of column. However, retention factors of reversed phase system were found on hydrophobic interaction with solvophobic effect.

  • PDF