• 제목/요약/키워드: functional equations

검색결과 517건 처리시간 0.023초

쉘 구조물의 확률적 동적 민감도 해석에 관한 연구 (A Study on the Stochastic Sensitivity Analysis in Dynamics of Shell Structure)

  • 배동명;이창훈
    • 수산해양기술연구
    • /
    • 제34권3호
    • /
    • pp.328-338
    • /
    • 1998
  • It is main objective of this approach to present a method to analyse stochastic design sensitivity for problems of structural dynamics with randomness in design parameters. A combination of the adjoint variable approach and the second oder perturbation method is used in the finite element approach. An alternative form of the constant functional that holds for all times is introduced to consider the time response of dynamic sensitivity. The terminal problem of the adjoint system is solved using equivalent homogeneous equations excited by initial velocities. The numerical procedures are shown to be much more efficient when based on the fold superposition method : the generalized co-ordinates are normalized and the correlated random variables are transformed to uncorrelated variables, where as the secularities are eliminated by the fast Fourier transform of complex valued sequences. Numerical algorithms have been worked out and proved to be accurate and efficient : they codes whose element derivative matrices can be explicitly generated. The numerical results of two cases - 2-dimensional portal frame and 3/4-cylindrical shell structure - for the deterministic and stochastic sensitivity analysis illustrates in this paper.

  • PDF

Effect of Pasternak foundation: Structural modal identification for vibration of FG shell

  • Hussain, Muzamal;Selmi, Abdellatif
    • Advances in concrete construction
    • /
    • 제9권6호
    • /
    • pp.569-576
    • /
    • 2020
  • Employment of the wave propagation approach with the combination of Pasternak foundation equation gives birth to the shell frequency equation. Mathematically, the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. A cylindrical shell is placed on the elastic foundation of Pasternak. For isotropic materials, the physical properties are same everywhere, whereas the laminated and functionally graded materials, they vary from point to point. Here the shell material has been taken as functionally graded material. The influence of the elastic foundation, wave number, length and height-to-radius ratios is investigated with different boundary conditions. The frequencies of length-to-radius and height-to-radius ratio are counter part of each other. The frequency first increases and gain maximum value in the midway of the shell length and then lowers down for the variations of wave number. It is found that due to inducting the elastic foundation of Pasternak, the frequencies increases. It is also exhibited that the effect of frequencies is investigated by varying the surfaces with stainless steel and nickel as a constituent material. MATLAB software is utilized for the vibration of functionally graded cylindrical shell with elastic foundation of Pasternak and the results are verified with the open literature.

STRONG CONTROLLABILITY AND OPTIMAL CONTROL OF THE HEAT EQUATION WITH A THERMAL SOURCE

  • Kamyad, A.V.;Borzabadi, A.H.
    • Journal of applied mathematics & informatics
    • /
    • 제7권3호
    • /
    • pp.787-800
    • /
    • 2000
  • In this paper we consider an optimal control system described by n-dimensional heat equation with a thermal source. Thus problem is to find an optimal control which puts the system in a finite time T, into a stationary regime and to minimize a general objective function. Here we assume there is no constraints on control. This problem is reduced to a moment problem. We modify the moment problem into one consisting of the minimization of a positive linear functional over a set of Radon measures and we show that there is an optimal measure corresponding to the optimal control. The above optimal measure approximated by a finite combination of atomic measures. This construction gives rise to a finite dimensional linear programming problem, where its solution can be used to determine the optimal combination of atomic measures. Then by using the solution of the above linear programming problem we find a piecewise-constant optimal control function which is an approximate control for the original optimal control problem. Finally we obtain piecewise-constant optimal control for two examples of heat equations with a thermal source in one-dimensional.

Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.1-16
    • /
    • 2017
  • This paper is presented to solve the buckling problem of functionally graded truncated conical shells subjected to displacement-dependent pressure which remains normal to the shell middle surface throughout the deformation process by the semi-analytical finite strip method. Material properties are assumed to be temperature dependent, and varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The governing equations are derived based on first-order shear deformation theory which accounts for through thickness shear flexibility with Sanders-type of kinematic nonlinearity. The element linear and geometric stiffness matrices are obtained using virtual work expression for functionally graded materials. The load stiffness also called pressure stiffness matrix which accounts for variation of load direction is derived for each strip and after assembling, global load stiffness matrix of the shell which may be un-symmetric is formed. The un-symmetric parts which are due to load non-uniformity and unconstrained boundaries have been separated. A detailed parametric study is carried out to quantify the effects of power-law index of functional graded material and shell geometry variations on the difference between follower and non-follower lateral buckling pressures. The results indicate that considering pressure stiffness which arises from follower action of pressure causes considerable reduction in estimating buckling pressure.

가변형상 트러스구조물의 자세제어 (Configuration Control of Vaiable-Geometry Truss Structures)

  • 노태환;김태익;박현철;권영두
    • 대한기계학회논문집A
    • /
    • 제20권9호
    • /
    • pp.2854-2865
    • /
    • 1996
  • The concept of variable-geometry truss structure(VGTS) is introduced as a class of actively controlled adaptive structure. VGTS can purposefully vary its geometric configurations by changing the lengths of some members of the structure. General kinematics and inverse kinematics of a statically determinate VGTS(variable geometry truss structure) are studied. The solution technique is based on the Jacobian matrix obtained via joint equilibrium equations. Pseudoinverse control method is applied to resolve the redundancy of a large VGTS. two types of actuator layout of octahedral type VGTS, VG truss and Stewart platform, are compared. Introducing the concept of performance index, Stewart platform based layout was found to has less consumption energy and manipulation time. A functional VGTS model with 3 octahedral modules is designed and manufactured for the labaratory demonstration. Six vertically located length-variable members are used to create general 6 d.o.f. motions.

나노 인덴테이션 실험과 유한요소해석을 이용한 전기아연도금강판의 코팅층 체적 거동 결정 (Determination of Deformation Behavior of Coating Layer on Electronic galvanized Sheet Steel using Nano-indentation and FEM)

  • 고영호;이정민;김병민
    • 한국정밀공학회지
    • /
    • 제22권10호
    • /
    • pp.186-194
    • /
    • 2005
  • This study was designed to investigate the mechanical properties of the coating layer on electronic galvanized sheet steel as a part of the ongoing research on the coated steel. Those properties were determined using nano-indentation, the finite element method, and artificial neural networks. First and foremost, the load-displacement curve (the loading-unloading curve) of coatings was derived from a nano-indentation test by CSM (continuous stiffness measurement) and was used to measure the elastic modulus and hardness of the coating layer. The properties derived were applied in FE simulations of a nano-indentation test, and the analytical results were compared with the experimental result. A numerical model for FE simulations was established for the coating layer and the substrate separately. Finally, to determine the mechanical properties of the coating, such as the stress-strain curve, functional equations of loading and unloading curves were introduced and computed using the neural networks method. The results show errors within $5\%$ in comparison with the load-displacement measured by a nano-indentation test.

기능성 일회용 호흡관의 소형화 연구 (Miniaturization of disposable functional flow tube)

  • 김경아;이태수;차은종
    • 센서학회지
    • /
    • 제14권4호
    • /
    • pp.250-257
    • /
    • 2005
  • Respiratory tubes with the length of 35 mm and the diameter of 10, 15, and 20 mm were made and both the static($P_{S}$) and dynamic($P_{D}$) pressures were measured for steady flow rates ranging 1-12 l/sec. Regression analysis resulted successful fitting of $P_{S}$ and $P_{D}$ data with quadratic equations with correlation coefficients higher than 0.99. The measurement standards of the American Thoracic Society (ATS) were applied to $P_{S}$ data, which demonstrated the smallest tube diameter of 15 mm to satisfy the ATS standards. The maximum $P_{D}$ value of the velocity type transducer with the diameter of 15 mm was estimated to be 75 cm$H_{2}O$, implying approximately 7 times larger sensitivity than the widely used pneumotachometer. These results showed that the velocity type respiratory air flow transducer is a unique device accomplishing miniaturization with the sensitivity increased, thus would be of great advantage to develop portable devices.

배전계통 전압/무효전력조정을 위한 새로운 전압/무효전력제어 방식 (A New Volt/Var Control of Substation for Distribution Volt/Var Regulation)

  • 최준호;김재철;손학식;임태훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.285-288
    • /
    • 2001
  • In this paper we proposed the on line volt/var control schemes of the load Tap Changer (LTC) transformer and shunt capacitor bank for distribution volt/var regulation. In the existing volt/var control of the distribution substation, the voltage of feeders and var of distribution systems is mainly controlled by the LTC transformer tap position and on/off status of the shunt capacitor. The LTC and shunt capacitor bank has discrete operation characteristics and therefore it is very difficult to control volt/var at the distribution networks within the satisfactory levels. Also there is limitation of the operation times of the LTC and shunt capacitor bank because it is affects on their functional lifetime. The proposed volt/var control algorithm determine an optimal tap position of LTC and on/off status of shunt capacitors at a distribution network with the multiple feeders. The mathematical equations of the proposed method are introduced. Simple case study was performed to verify the effectiveness of the proposed method.

  • PDF

국지 부유퇴적물 농도의 결정을 위한 연직1차원 이류확산 방정식의 해석해 (An Analytical Solution of the Vertically One-dimensional Convection-Diffusion Equation for the Determination of Local Suspended Sediment Concentration)

  • Jung, Kyung-Tae;Jin, Jae-Youll;Kang, Hyoun-Woo;Cho, Hong-Yeon;Kim, Mee-Kyung;John Noye
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 2003년도 한국해안해양공학발표논문집
    • /
    • pp.208-215
    • /
    • 2003
  • Convective-diffusion equations appear in various disciplines such as hydrology, chemical engineering and oceanography dealing with the transport problem of scalar quantities. Since it is nonlinear, numerical methods are generally used to obtain its solution. Very limited number of analytical solutions are available usually in cases when the convective velocity is constant or has a simple functional form (for some collection of the solutions, see Noye, 1987). There is however a continuing need to develop analytical solutions because of its practical importance. Analytical solutions of the convection-diffusion equation are valuable not only for the better understanding on the transport process but the verification of numerical schemes. (omitted)

  • PDF

배전계통 전압/무효전력 보상을 위한 LTC변압기와 SC의 협조운전 알고리즘 (Cooperation Algorithms of LTC and SC for Distribution Volt/Var Regulation)

  • 최준호;김재철;남해곤;문승일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.399-402
    • /
    • 2003
  • In this paper, the on line volt/var control algorithms of the food Load Tap Changer (LTC) transformer and Shunt Capacitor(SC) are proposed for distribution volt/var regulation. In the existing volt/var control of the distribution substation, the voltage of feeders and var of distribution systems is mainly controlled by the LTC transformer tap position and on/off status of the shunt capacitor. The LTC and shunt capacitor bank has discrete operation characteristics and therefore it is very difficult to control volt/var at the distribution networks within the satisfactory levels. Also there is limitation of the operation times of the LTC and shunt capacitor bank because it is affects on their functional lifetime. The proposed volt/var control algorithm determine an optimal tap position of LTC and on/off status of shunt capacitors at a distribution network with the multiple feeders. The mathematical equations of the proposed method are introduced. Simple case study was performed to verify the effectiveness of the proposed method.

  • PDF