• Title/Summary/Keyword: functional building materials

Search Result 88, Processing Time 0.021 seconds

A Study on the Functional Unit Trend of Carbon Dioxide Emission in the Construction Materials between 2000, 2003 and 2005 (건축재료의 이산화탄소 배출원단위 변화추이연구)

  • Lee, KangHee;Lee, HaShik;Yang, JaeHyuk
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.123-129
    • /
    • 2010
  • This study aimed at analyzing the trend of carbon dioxide emission for direct and indirect areas by using inter industry relations table between 2000, 2003 and 2005 in the key building materials and components. Results of this study are as follows; First, the material and components for this study was selected in 20 industries of products such as sand, gravel, cement, concrete articles, rebar, and steel bar. Second, among the 20 selected key building materials, the group with the highest carbon-dioxide emission was shown in ready-mixed concrete, concrete articles, and primary aluminum goods. Third, as a result of analyzing the changes to the units of carbon dioxide emission according to passage of time, the number of items which is changed in such as sustained increase or decrease over time was insignificant in carbon-emission change trend.

Performance Evaluation of Water Vapour Adsorption/Desorption Property for a Building Material by Mock up Test (실물시험을 통한 흡방습 건축자재의 성능평가)

  • Kim, Hea Jeong;Song, Kyoo Dong;Lee, Yun Gyu
    • KIEAE Journal
    • /
    • v.9 no.2
    • /
    • pp.53-58
    • /
    • 2009
  • There are increasing developments and uses of functional building materials are recently developed and introduced to the test method for the materials. Especially, moisture problem has a major role are also being established in indoor air quality problems. The purpose of this study is to evaluate the water vapour adsorption/desorption property of a ceiling material. The variation of the temperature and moisture were measured with the application materials by mock up test based on JIS 1470-1. The result shows that water vapour adsorption/desorption property of ceiling material is appeared in changes of moisture adsorption and desorption in comparison with that of a general ceiling material. Therefore, in case of decreasing and increasing in humidity, these materials can be used as an finishing material to sustain comfort condition.

Comparative Evaluation of Condensation by Type and Layer Around Built-in Furniture of Apartment Buildings (WUFI를 이용한 공동주택 붙박이가구의 층별·형태별 결로 생성 비교 평가)

  • Yoo, Jiwon;Chang, Seong Jin;Lee, Jongki;Wi, Seunghwan;Kim, Sumin
    • Journal of the Korea Furniture Society
    • /
    • v.29 no.1
    • /
    • pp.31-39
    • /
    • 2018
  • Recently, as the continuously increasing of the one-person households, builders were focusing on a built-in furniture development for efficiency. Through the dead space of the space can be reduced. Also, Condensation that occurs in a built-in furnitures installation space may result in different results depending on the room's direction, floor, finish, adjacent room effect, occupant's lifestyle. In this background, it can be considered in terms of functional aspect and morphological aspect by using WUFI2D simulation system. As a result, the tendency of occurrence of condensation was examined by comparing the water content and the growth potential of fungus graph which came from WUFI2D. Results of this study are as followings: Built-in furniture, both top & bottom open, is more stable to condensation than the built-in furniture with the top or bottom open. Also, Among from the top floor built-in furniture to the bottom of it, the bottom one is more stable to condensation.

  • PDF

Study on Water Resistance of Environmentally Friendly Magnesium Oxychloride Cement for Waste Wood Solidification

  • Zhang, Feng-Jun;Sun, Xian-Yang;Li, Xuan;Zhang, Dan;Xie, Wen- Jie;Liu, Jin;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.446-451
    • /
    • 2018
  • In this study, different formulations of magnesium oxide and various modifiers (phosphoric acid, ferrous sulfate, pure acrylic emulsion, silicone acrylic emulsion, glass fiber, and polypropylene fiber) were used to prepare magnesium oxychloride cement composites. The compressive strength of the magnesium oxychloride cement was tested, and the softening coefficients of the composites after soaking in water were also calculated. The results showed that a magnesium oxychloride cement sample could not be coagulated when the MgO activity was 24.3%, but the coagulation effect of the magnesium oxide cement sample was excellent when the MgO activity was 69.5%. While pure acrylic emulsion, silicon-acrylic emulsion, and glass fiber showed insignificant modification effects on the magnesium oxychloride cement, ferrous sulfate heptahydrate, phosphoric acid, and polypropylene fiber could effectively improve its water resistance and compressive strength. When the phosphoric acid, ferrous sulfate heptahydrate, and polypropylene fiber contents were 0.47%, 0.73%, and 0.25%, respectively, the softening coefficient of a composite soaked in water reached 0.93 after 7 days, and the compressive strength reached 64.3 MPa.

Nanostructured Materials and Nanotechnology : Overview

  • Muhammed, Mamoun;Tsakalakos, Thomas
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1027-1046
    • /
    • 2003
  • Nanostructured materials can be engineered by the controlled assembly of several suitable nano-objects as the building blocks. While, materials properties are determined by their atomic and molecular constituents and structure, their functionalities emerge when the microstructure of these early ensembles is in the nanometer regime. The properties and functionalities of these ensembles may be different as their size grows from the nano-regime to the micron regime and bulk structures. Nanotechnology, offers a unique possibility to manipulate the properties through the fabrication of materials using the nano-objects as building blocks. Nanotechnology is therefore considered an enabling technology by which existing materials, virtually all man-made materials, can acquire novel properties and functionalities making them suitable for numerous novel applications varying from structural and functional to advanced biomedical in-vivo and in-vitro applications.

Fabrication of Ordered or Disordered Macroporous Structures with Various Ceramic Materials from Metal Oxide Nanoparticles or Precursors

  • Cho, Young-Sang;Moon, Jun-Hyuk;Kim, Young-Kuk;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.347-358
    • /
    • 2011
  • Two different schemes were adopted to fabricate ordered macroporous structures with face centered cubic lattice of air spheres. Monodisperse polymeric latex suspension, which was synthesized by emulsifier-free emulsion polymerization, was mixed with metal oxide ceramic nanoparticles, followed by evaporation-induced self-assembly of the mixed hetero-colloidal particles. After calcination, inverse opal was generated during burning out the organic nanospheres. Inverse opals made of silica or iron oxide were fabricated according to this procedure. Other approach, which utilizes ceramic precursors instead of nanoparticles was adopted successfully to prepare ordered macroporous structure of titania with skeleton structures as well as lithium niobate inverted structures. Similarly, two different schemes were utilized to obtain disordered macroporous structures with random arrays of macropores. Disordered macroporous structure made of indium tin oxide (ITO) was obtained by fabricating colloidal glass of polystyrene microspheres with low monodispersity and subsequent infiltration of the ITO nanoparticles followed by heat treatment at high temperature for burning out the organic microspheres. Similar random structure of titania was also fabricated by mixing polystyrene building block particles with titania nanoparticles having large particle size followed by the calcinations of the samples.

An Evaluation of Fire Resistance and Mock-up Test of the Alumino-silicate Fire Resistant Board (알루미노 실리케이트계 내화보드의 내화성능 및 현장적용성 평가)

  • Kim, Doo-Ho;Park, Dong-Cheol;Kim, Woo-Jae;Lee, Sea-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05b
    • /
    • pp.43-47
    • /
    • 2010
  • The use of high-strength concrete has increased for its excellent structural stability as buildings become higher and bigger than ever before in Korea and overseas recently. The functional requirement of building materials has also been bolstered so for the high -performance, high-quality construction materials to be used more extensively. However, the internal structure of the high-strength concrete is very dense so spalling can be caused during fire. The spalling in turn can cause critical structural damages followed by the fatal consequences, demolition of the building. Therefore, ensuring fire safety for high-rise buildings is assumed to be urgent. Alumino-silicate fire resistant board producing technology has been developed in situations that new materials with excellent fire resistance and easy installation has been sought. The alumino-silicate fire resistant board turned out to exhibit not only fire resistance and excellent physical and dynamical characteristics but also excellent onsite applicability and easy process and transportation after completing Mock-up test. Its excellence as a high-performance building materials was proven.

  • PDF

Synthesis and Photocatalytic Activity of TiO2/BiVO4 Layered Films under Visible Light Irradiation

  • Li, Xuan;Zhang, Zhuo;Zhang, Feng-Jun;Liu, Jin;Ye, Jie;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.665-669
    • /
    • 2016
  • $TiO_2/BiVO_4$ layered films were prepared by sol-gel and spin coating methods. X-ray diffraction (XRD), scanning electron microscopy (SEM) and Uv-vis spectroscopy were used to investigate the crystal structure, morphology and ultraviolet-visible absorption of the $TiO_2/BiVO_4$ films. The photocatalytic activity of the prepared films was inspected according to the degradation of methylene blue. The results show that the prepared films present a net chain structure; the absorption band edge had obvious red shift. The degradation of the methylene blue solution was about 80% after 300 mins using $TiO_2/BiVO_4$ layered films under visible light, which was stronger than when using only pure $TiO_2$ film and $BiVO_4$ film.

Synthesis and Properties of the New Photorefractive Material (새로운 광굴절재료의 제작 및 특성)

  • Min, Wan Ki;Kim, Nam Oh;Sasabe, Hiroyuki
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.142-148
    • /
    • 2002
  • Considerable progress has been made in organic photorefractive materials, since the first observation of photorefractive phenomena from organic materials. Within recent years, a large number of organic photorefractive materials, especially amorphous materials, have been developed based on polymeric composites, fully functional polymers and the multi-functional chromophore approach. Among these organic photorefractive materials, some of them containing carbazole components as a charge transporting function have been demonstrated to exhibit high performance photorefractive effects. The carbazole building blocks with charge transporting function or multifunctions play a very important role in photorefraction. In this paper, it confirmed that acceptor-substituted carbazoles show the multifunctionality both of photoconductivity and electro-optic(EO) activity and photorefractive materials newly can be developed with acceptor-substituted carbazoles.

The Study on Inner Air Pollutants Absorptional Capability of Functional Mortar using Properties of Zeolite Powder (제올라이트계 분말을 이용한 기능성 모르터의 실내공기 오염물질 흡착 성능에 관한 연구)

  • Shin Yong-Jae;Heo Jae-Won;Kim Hyo-Youl;Lee Jong-Il;Lim Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.63-69
    • /
    • 2006
  • In a traditional society, building materials were developed fulfilling the requirements of conveniences and functionalities such as safety, construction work, durability and economical efficiency. However, as the concern about environmental or users' health issues has been elevated recently, research and development about eco-friendly material are alto vigorously promoted further In addition, thanks to the steady growth of domestic industry, the amount of discharged industrial by-product is getting increasing. However, its recycling rate remain at low level as most industrial by-products are filled up in the land, which worsen the environmental pollution. Zeolite powder is cement admixture and is expected to have constraining effect of factors causing symptoms of inhabitants in a new house and alleviates the amount of discharged harmful elements emitted from hardened cement.

  • PDF