• Title/Summary/Keyword: functional activity of p53 protein

Search Result 31, Processing Time 0.038 seconds

Structure and apoptotic function of p73

  • Yoon, Mi-Kyung;Ha, Ji-Hyang;Lee, Min-Sung;Chi, Seung-Wook
    • BMB Reports
    • /
    • v.48 no.2
    • /
    • pp.81-90
    • /
    • 2015
  • p73 is a structural and functional homologue of the p53 tumor suppressor protein. Like p53, p73 induces apoptosis and cell cycle arrest and transactivates p53-responsive genes, conferring its tumor suppressive activity. In addition, p73 has unique roles in neuronal development and differentiation. The importance of p73-induced apoptosis lies in its capability to substitute the pro-apoptotic activity of p53 in various human cancer cells in which p53 is mutated or inactive. Despite the great importance of p73-induced apoptosis in cancer therapy, little is known about the molecular basis of p73-induced apoptosis. In this review, we discuss the p73 structures reported to date, detailed structural comparisons between p73 and p53, and current understanding of the transcription-dependent and -independent mechanisms of p73-induced apoptosis.

The Overview of the Importances of Tumor Suppressor p53 for Investigating Molecular Toxicological Mechanisms of Various Environmental Mutagens (다양한 환경변이원의 분자독성학적 메커니즘 연구에 있어서 항종양 인자 p53의 중요성 고찰)

  • Jung Hwa Jin;Ryu Jae-Chun;Seo Young Rok
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.3
    • /
    • pp.321-326
    • /
    • 2004
  • The study of p53 tumor suppressor protein is one of most important subjects in an environmental toxicology as well as in cancer biology. Generally, p53 has been known to involve the cell cycle regulation and apoptosis by the activation of its target genes such as p21 and bax in a number of cellular stress responses. In addition, associations of p53 with cellular proteins presumably reflect the involvement of p53 in critical cellular processes such as DNA repair. The complex formation of p53 and exogenous proteins such as viral or cellular proteins has been shown in many cases to play important roles in carcinogenic processes against environmental mutagen. Recently, the disruption of p53 protein by oxidative stress has been also reported to have relevance to carcinogenesis. These findings suggested that the maintaining of stability and functional activity of p53 protein was also important aspect to play as a tumor suppressor protein. Therefore, the detection of functional status of p53 proteins might be an effective biomarker for the cancer and human diseases under the environmental toxicologic carcinogen.

Induction of p21 and apoptosis by C11 in human hepatocarcinoma cells

  • Kim, Won-Ho;Kang, Kyung-Hwa;Choi, Kyung-Hee
    • Proceedings of the Zoological Society Korea Conference
    • /
    • 1998.10b
    • /
    • pp.360-360
    • /
    • 1998
  • C11, a chloride-containing VK3 analog, acts as a mediator of programmed cell death in SK-Hep-1 cell lines, but its molecular mechanisms linked to cell death are not understood. In this study, we investigated the expression of p21 gene and its relationship to apoptosis induced by C11. In SK -hep-1 cells, the addition of C11 resulted in time-dependent growth suppression and DNA fragmentation characteristics of apoptosis. p21 protein was induced during this process, while the protein level of p53 was not changed at the same condition. This apoptotic cell death with p21 induction was also observed in the Hep3B cells lacking functional p53 after treatment of C11. These results suggest that C11-induced apoptosis is associated with up-regulation of p21 protein in p53-independent pathway. Next, in order to confirm whether the p53-independent p21 induction is required for C11-induced apoptosis, we introduced the p21 gene into Hep3B. Overexpression of p21 did not affect the expression of the bcl-2 gene, but DNA fragmentation and PARa cleavage were significantly increased. These data indicate that p21 is involved in C11-induced apoptosis. Although Bcl-2 has been implicated to interfere with an essential signaling molecule involved in the apoptosis pathway, its molecular mechanism and target molecule are poorly understood. To determine the effects of bcl-2 overexpression on apoptosis and to investigate whether BcI-2 interfers with the p53-independent p21 pathway, we transfected the bcl-2 expression vector into SK - Hep-1 cels. Overexpression of Bcl-2 prevented C11-induced apoptosis. Taken together, C11-induced apoptosis is regulated by p52-independent p21 pathway and bcl-2 may inhibit functional activity of p21, therebe may inhibit the C11-induced apoptosis.ptosis.

  • PDF

Molecular Characterization of a Nuclease Gene of Chlorella Virus SS-2

  • Park, Yun-Jung;Jung, Sang-Eun;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • v.25 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • Sequence analysis of the Chlorella virus SS-2 revealed one putative nuclease gene that is 807 bp long and encodes a 31kDa protein. Multiple sequence alignment analysis reveals the presence of highly conserved PD-(D/E)XK residues in the encoded protein. The gene cloned into an expression vector was expressed as a His-tagged fusion protein in chaperone containing pKJE7 cells. The recombinant protein was purified using a His-Trap chelating HP column and used for functional analysis. Exonuclease activity of the SS-2 nuclease was detected when the DNA substrates, such as linear ssDNA, PCR amplicon, linear dsDNA with 5'-overhang ends, 3'-overhang ends, or blunt ends were used. Covalently closed circular DNA was also degraded by the SS-2 recombinant protein, suggesting that the SS-2 nuclease has an endonuclease activity. Stable activity of SS-2 nuclease was observed between $10^{\circ}C$ and $50^{\circ}C$. The optimum pH concentrations for the SS-2 nuclease were pH 6.0-8.5. Divalent ions inhibited the SS-2 nuclease activity.

Novel functional roles of caspase-related genes in the regulation of apoptosis and autophagy

  • Shin, Ju-Hyun;Min, Sang-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.573-580
    • /
    • 2016
  • Caspases, a family of cysteine proteases, cleave substrates and play significant roles in apoptosis, autophagy, and development. Recently, our group identified 72 genes that interact with Death Caspase-1 (DCP-1) proteins in Drosophila by genetic screening of 15,000 EP lines. However, the cellular functions and molecular mechanisms of the screened genes, such as their involvement in apoptosis and autophagy, are poorly understood in mammalian cells. In order to study the functional characterizations of the genes in human cells, we investigated 16 full-length human genes in mammalian expression vectors and tested their effects on apoptosis and autophagy in human cell lines. Our studies revealed that ALFY, BIRC4, and TAK1 induced autophagy, while SEC61A2, N-PAC, BIRC4, WIPI1, and FALZ increased apoptotic cell death. BIRC4 was involved in both autophagy and apoptosis. Western blot analysis and luciferase reporter activity indicated that ALFY, BIRC4, PDGFA, and TAK1 act in a p53-dependent manner, whereas CPSF1, SEC61A2, N-PAC, and WIPI1 appear to be p53-independent. Overexpression of BIRC4 and TAK1 caused upregulation of p53 and accumulation of its target proteins as well as an increase in p53 mRNA levels, suggesting that these genes are involved in p53 transcription and expression of its target genes followed by p53 protein accumulation. In conclusion, apoptosis and/or autophagy mediated by BIRC4 and TAK1 may be regulated by p53 and caspase activity. These novel findings may provide valuable information that will aid in a better understanding of the roles of caspase-related genes in human cell lines and be useful for the process of drug discovery.

$p19^{ras}$ Accelerates $p73{\beta}$-mediated Apoptosis through a Caspase-3 Dependent Pathway

  • Jang, Sang-Min;Kim, Jung-Woong;Choi, Kyung-Hee
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.399-403
    • /
    • 2009
  • $p19^{ras}$ is an alternative splicing variant of the proto-oncogene c-H-ras pre-mRNA of $p21^{ras}$. In contrast to $p21^{ras}$, $p19^{ras}$ does not have a C-terminal CAAX motif that targets the plasma membrane and is localized to both the cytoplasm and nucleus. We found that $p19^{ras}$ activated the transcriptional activity of $p73{\beta}$ through protein-protein interactions in the nucleus. p73 is known to play an important role in cellular damage responses such as apoptosis. Although p73 is a structural and functional homologue of p53, p73-mediated apoptosis has not yet been clearly elucidated. In this study, we demonstrate that the interaction between $p19^{ras}$ and $p73{\beta}$ accelerated $p73{\beta}$-induced apoptosis through a caspase-3 dependent pathway. Treatment with DEVD-CHO, a caspase inhibitor, also strengthened $p73{\beta}$-mediated apoptosis through a caspase-3 dependent pathway. Furthermore, the enhanced transcriptional activity of endogenous $p73{\beta}$ by treatment with Taxol was amplified by $p19^{ras}$ overexpression, which markedly increased caspase-3 dependent apoptosis in the p53-null SAOS2 cancer cell line. Our findings indicate a functional linkage between $p19^{ras}$ and p73 in caspase-3 mediated apoptosis of cancer cells.

Prevention of UV-induced Skin Damage by Activation of Tumor Suppressor Genes p53 and $p14^{ARF}$

  • Petersen, R.;John, S.;Lueder, M.;Borchert, S.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.338-351
    • /
    • 2003
  • UV radiation is the most dangerous stress factor among permanent environmental impacts on human skin. Consequences of UV exposure are aberrant tissue architecture, alterations in skin cells including functional changes. Nowadays new kinds of outdoor leisure-time activities and changing environmental conditions make the question of sun protection more important than ever. It is necessary to recognize that self-confident consumers do not consider to change their way of life, they demand modern solutions on the basis of new scientific developments. In the past one fundamental principle of cosmetics was the use of physical and organic filter systems against damaging UV-rays. Today new research results demonstrate that natural protecting cell mechanisms can be activated. Suitable biological actives strongly support the protection function not from the surface but from the inside of the cell. A soy seed preparation (SSP) was proven to stimulate natural skin protective functions. The major functions are an increased energy level and the prevention of DNA damage. These functions can I be defined as biological UV protection. The tumor suppressor protein p53 plays a key role in the regulation of DNA repair. p53 must be transferred into the phosphorylated form to work as transcription factor for genes which are regulating the cell cycle or organizing DNA repair. A pretreatment with SSP increases the phosphorylation rate of p53 of chronically UV-irradiated human keratinocytes significantly. According to the same test procedure SSP induces a dramatic increase in the expression of the tumor suppressor protein p14$^{ARF}$ that is supporting the p53 activity by blocking the antagonist of p53, the oncoprotein Mdm2. Mdm2, a ubiquitin E3-ligase, downregulates p53 and at the same time it prevents phosphorylation of p53. The positive influence of the tumor suppressor proteins explains the stimulation of DNA repair and prevention of sunburn cell formation by SSP, which was proven in cell culture experiments. In vivo the increased skin tolerance against UV irradiation by SSP could be confirmed too. We have assumed, that an increased repair potential provides full cell functionality.y.

  • PDF

Identification of Immunodominant B-cell Epitope Regions of Reticulocyte Binding Proteins in Plasmodium vivax by Protein Microarray Based Immunoscreening

  • Han, Jin-Hee;Li, Jian;Wang, Bo;Lee, Seong-Kyun;Nyunt, Myat Htut;Na, Sunghun;Park, Jeong-Hyun;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.4
    • /
    • pp.403-411
    • /
    • 2015
  • Plasmodium falciparum can invade all stages of red blood cells, while Plasmodium vivax can invade only reticulocytes. Although many P. vivax proteins have been discovered, their functions are largely unknown. Among them, P. vivax reticulocyte binding proteins (PvRBP1 and PvRBP2) recognize and bind to reticulocytes. Both proteins possess a C-terminal hydrophobic transmembrane domain, which drives adhesion to reticulocytes. PvRBP1 and PvRBP2 are large (>326 kDa), which hinders identification of the functional domains. In this study, the complete genome information of the P. vivax RBP family was thoroughly analyzed using a prediction server with bioinformatics data to predict B-cell epitope domains. Eleven pvrbp family genes that included 2 pseudogenes and 9 full or partial length genes were selected and used to express recombinant proteins in a wheat germ cell-free system. The expressed proteins were used to evaluate the humoral immune response with vivax malaria patients and healthy individual serum samples by protein microarray. The recombinant fragments of 9 PvRBP proteins were successfully expressed; the soluble proteins ranged in molecular weight from 16 to 34 kDa. Evaluation of the humoral immune response to each recombinant PvRBP protein indicated a high antigenicity, with 38-88% sensitivity and 100% specificity. Of them, N-terminal parts of PvRBP2c (PVX_090325-1) and PvRBP2 like partial A (PVX_090330-1) elicited high antigenicity. In addition, the PvRBP2-like homologue B (PVX_116930) fragment was newly identified as high antigenicity and may be exploited as a potential antigenic candidate among the PvRBP family. The functional activity of the PvRBP family on merozoite invasion remains unknown.

Quality Characteristics of Soybean Paste Added with Krill (크릴이 첨가된 된장의 품질 특성)

  • Kim, Ji-Sang;Moon, Gap-Soon;Lee, Young-Soon
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.19 no.5
    • /
    • pp.776-782
    • /
    • 2009
  • This study was conducted to develop functional soybean paste with krill (Euphausiacea) as compared to a conventional soybean paste (S1). Soybean containing 10%, 20% and 30% (w/w) krill (S2~S4, respectively) was prepared and quality characteristics (moisture, crude fat, crude protein, ash, reducing sugar, pH, titratable acidity, total acidity and buffering power) were assessed during fermentation for 150 days. As well, antioxidative activities of krill soybean paste were compared to those of control soybean paste based on total phenolic compound content and free radical scavenging activity, including the 1,1-diphenyl-2-picryl-hydrazil (DPPH) scavenging activity and the thiobarbituric acid value (TBA value). The moisture content of all samples decreased to 41.91~53.47% during fermentation, while the crude fat increased to 1.98~5.21% with increasing addition of krill. Additionally, crude protein increased slightly to 8.24~14.08% with increasing addition of krill after 120 days of fermentation. Ash content was 15.96~18.92%. The reducing sugar content of S2, S3 and S4 was higher than those of S1 with increasing length of fermentation. S2, S3, and S4 displayed progressive decreases in pH and progressive increases in titratable acidity compared to S1. The total acidity of all samples was increased, while the buffering power was decreased with increasing fermentation. Especially, the buffering power of S1 was lower than that of S2, S3 and S4. DPPH radical scavenging activity of lipophilic extracts from S2, S3 and S4 was slightly higher than those of S1. However, the radical scavenging activity of hydrophilic extracts from all samples had similar tendencies, regardless of the krill content or fermentation period. Total phenolics increased with increasing fermentation time and TBA value increased with increasing fermentation time and krill content.

  • PDF

Food Functionality and Bioactivity of Vacuum Freeze-dried Fish Roe Concentrates (동결건조 어류 알 농축물의 식품기능성 및 생리활성)

  • Yoon, In Seong;Kim, Hyeung Jun;Kang, Sang In;Kim, Do Youb;Lee, Chang Young;Jeong, U-Cheol;Kim, Jin-Soo;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.3
    • /
    • pp.403-416
    • /
    • 2020
  • The purpose of this study was to evaluate the food functional properties and in vitro bioactivity of vacuum freeze-dried fish roe concentrates (FRCs) prepared from Alaska pollock Theragra chalcogramma (AP), bastard halibut Paralichthys olivaceus (BH) and skipjack tuna Katsuwonus pelamis (ST). All three species showed better buffering capacity on the alkaline side (pH 10-12) than on the acidic side. The water-holding capacities of the FRCs were 3.5, 8.5 and 4.2 g/g protein for AP, BH and ST, respectively, and were significantly higher than that of commercial egg white. The protein solubilities of the FRCs were 42.5% (AP), 50.0% (BH) and 13.9% (ST). The foaming capacities of the FRCs were not significantly different among the species (128.0% for AP, 128.3% for BH, and 143.3% for ST; P>0.05), and their foam stability was maintained at 53.0-74.2% for 60 minutes. The oil-in-water emulsifying activity indexes of AP and BH (19.5 and 20.2 ㎡/g protein, respectively) were significantly superior to that of ST (P<0.05). The 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothia-zoline-6-sulfonic acid radical-scavenging activities (IC50, mg/mL) of the FRCs were in the ranges of 1.05-3.26 and 0.13-0.18 mg/mL, respectively, and the angiotensin I converting enzyme inhibitory activity was in the range of 0.97-1.89 mg/mL.