• Title/Summary/Keyword: function rings

Search Result 87, Processing Time 0.023 seconds

On The Function Rings of Pointfree Topology

  • Banaschewski, Bernhard
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.195-206
    • /
    • 2008
  • The purpose of this note is to compare the rings of continuous functions, integer-valued or real-valued, in pointfree topology with those in classical topology. To this end, it first characterizes the Boolean frames (= complete Boolean algebras) whose function rings are isomorphic to a classical one and then employs this to exhibit a large class of frames for which the functions rings are not of this kind. An interesting feature of the considerations involved here is the use made of nonmeasurable cardinals. In addition, the integer-valued function rings for Boolean frames are described in terms of internal lattice-ordered ring properties.

GRADED INTEGRAL DOMAINS AND NAGATA RINGS, II

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.25 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • Let D be an integral domain with quotient field K, X be an indeterminate over D, K[X] be the polynomial ring over K, and $R=\{f{\in}K[X]{\mid}f(0){\in}D\}$; so R is a subring of K[X] containing D[X]. For $f=a_0+a_1X+{\cdots}+a_nX^n{\in}R$, let C(f) be the ideal of R generated by $a_0$, $a_1X$, ${\ldots}$, $a_nX^n$ and $N(H)=\{g{\in}R{\mid}C(g)_{\upsilon}=R\}$. In this paper, we study two rings $R_{N(H)}$ and $Kr(R,{\upsilon})=\{{\frac{f}{g}}{\mid}f,g{\in}R,\;g{\neq}0,{\text{ and }}C(f){\subseteq}C(g)_{\upsilon}\}$. We then use these two rings to give some examples which show that the results of [4] are the best generalizations of Nagata rings and Kronecker function rings to graded integral domains.

Analysis of Steady Vortex Rings Using Contour Dynamics Method for the Stream Function

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • In this study, the Norbury-Fraenkel family of vortex rings is analyzed using a contour dynamics method for the stream function, which significantly reduces the numerical burden in the calculation. The stream function is formulated as the integral along the contour of the vorticity core. The integration over the logarithmic-singular segment is evaluated analytically, and the positions of the nodal points of the contour are calculated directly. The shapes of the cores and the dividing stream surfaces are found based on the mean core radius. Compared with other studies, the proposed method is verified and found to be more efficient.

Analysis of Steady Vortex Rings Using Contour Dynamics Method for Fluid Velocity

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.108-114
    • /
    • 2022
  • Most studies on the shape of the steady vortex ring have been based on the Stokes stream function approach. In this study, the velocity approach is introduced as a trial approach. A contour dynamics method for fluid velocity is used to analyze the Norbury-Fraenkel family of vortex rings. Analytic integration is performed over the logarithmic-singular segment. A system of nonlinear equations for the discretized shape of the vortex core is formulated using the material boundary condition of the core. An additional condition for the velocities of the vortical and impulse centers is introduced to complete the system of equations. Numerical solutions are successfully obtained for the system of nonlinear equations using the iterative scheme. Specifically, the evaluation of the kinetic energy in terms of line integrals is examined closely. The results of the proposed method are compared with those of the stream function approaches. The results show good agreement, and thereby, confirm the validity of the proposed method.

Characterization of Function Rings Between C*(X) and C(X)

  • De, Dibyendu;Acharyya, Sudip Kumar
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.503-507
    • /
    • 2006
  • Let X be a Tychonoff space and ${\sum}(X)$ the set of all the subrings of C(X) that contain $C^*(X)$. For any A(X) in ${\sum}(X)$ suppose $_{{\upsilon}A}X$ is the largest subspace of ${\beta}X$ containing X to which each function in A(X) can be extended continuously. Let us write A(X) ~ B(X) if and only if $_{{\upsilon}A}X=_{{\upsilon}B}X$, thereby defining an equivalence relation on ${\sum}(X)$. We have shown that an A(X) in ${\sum}(X)$ is isomorphic to C(Y ) for some space Y if and only if A(X) is the largest member of its equivalence class if and only if there exists a subspace T of ${\beta}X$ with the property that A(X)={$f{\in}C(X):f^*(p)$ is real for each $p$ in T}, $f^*$ being the unique continuous extension of $f$ in C(X) from ${\beta}X$ to $\mathbb{R}^*$, the one point compactification of $\mathbb{R}$. As a consequence it follows that if X is a realcompact space in which every $C^*$-embedded subset is closed, then C(X) is never isomorphic to any A(X) in ${\sum}(X)$ without being equal to it.

  • PDF

CHARACTERIZATIONS OF GRADED PRÜFER ⋆-MULTIPLICATION DOMAINS

  • Sahandi, Parviz
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.181-206
    • /
    • 2014
  • Let $R={\bigoplus}_{\alpha{\in}\Gamma}R_{\alpha}$ be a graded integral domain graded by an arbitrary grading torsionless monoid ${\Gamma}$, and ⋆ be a semistar operation on R. In this paper we define and study the graded integral domain analogue of ⋆-Nagata and Kronecker function rings of R with respect to ⋆. We say that R is a graded Pr$\ddot{u}$fer ⋆-multiplication domain if each nonzero finitely generated homogeneous ideal of R is ⋆$_f$-invertible. Using ⋆-Nagata and Kronecker function rings, we give several different equivalent conditions for R to be a graded Pr$\ddot{u}$fer ⋆-multiplication domain. In particular we give new characterizations for a graded integral domain, to be a $P{\upsilon}MD$.

The Potentiating Effect of Sodium Nitroprusside on the Contraction Induced by Phenylephrino in Rat Aortic Rings (Phenylephrine에 의한 수축에 대한 Sodium Nitroprusside의 혈관수축 증대효과)

  • Je, Hyun-Dong
    • YAKHAK HOEJI
    • /
    • v.50 no.3
    • /
    • pp.208-213
    • /
    • 2006
  • Rat aortic ring preparations were mounted in organ baths, exposed to sodium cyanide $(0.01{\sim}1.0\;mM)$ for 10 min, and then subjected to contractile agents or relaxants such as acetylcholine, sodium nitroprusside and isoproterenol. Presence of low concentration of sodium cyanide did not affect the contractile response to KCl or phenylephrine in the aortic rings with intact endothelium or endothelium denuded. Sodium nitroprusside but not acetylcholine or isoproterenol augmented phenylephrine-induced intact or denuded vascular contraction in the presence of low concentration of sodium cyanide. In conclusion, this study provides the evidence concerning the potentiating effect of sodium nitroprusside on the contraction induced by phenylephrine in rat aortic rings regardless of endothelial function.

BETTI NUMBERS OVER ARTINIAN LOCAL RINGS

  • Choi, Sangki
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.35-44
    • /
    • 1994
  • In this paper we study exponential growth of Betti numbers over artinian local rings. By the Change of Tor Formula the results in the paper extend to the asymptotic behavior of Betti numbers over Cohen-Macaulay local rings. Using the length function of an artinian ring we calculate an upper bound for the number of generators of modules, this is then used to maximize the number of generators of sygyzy modules. Finally, applying a filtration of an ideal, which we call a Loewy series of an ideal, we derive an invariant B(R) of an artinian local ring R, such that if B(R)>1, then the sequence $b^{R}$$_{i}$ (M) of Betti numbers is strictly increasing and has strong exponential growth for any finitely generated non-free R-module M (Theorem 2.7).).

  • PDF