• 제목/요약/키워드: fullest balanced model

검색결과 2건 처리시간 0.017초

Response Surface Methodology Using a Fullest Balanced Model: A Re-Analysis of a Dataset in the Korean Journal for Food Science of Animal Resources

  • Rheem, Sungsue;Rheem, Insoo;Oh, Sejong
    • 한국축산식품학회지
    • /
    • 제37권1호
    • /
    • pp.139-146
    • /
    • 2017
  • Response surface methodology (RSM) is a useful set of statistical techniques for modeling and optimizing responses in research studies of food science. In the analysis of response surface data, a second-order polynomial regression model is usually used. However, sometimes we encounter situations where the fit of the second-order model is poor. If the model fitted to the data has a poor fit including a lack of fit, the modeling and optimization results might not be accurate. In such a case, using a fullest balanced model, which has no lack of fit, can fix such problem, enhancing the accuracy of the response surface modeling and optimization. This article presents how to develop and use such a model for the better modeling and optimizing of the response through an illustrative re-analysis of a dataset in Park et al. (2014) published in the Korean Journal for Food Science of Animal Resources.

Optimizing Food Processing through a New Approach to Response Surface Methodology

  • Sungsue Rheem
    • 한국축산식품학회지
    • /
    • 제43권2호
    • /
    • pp.374-381
    • /
    • 2023
  • In a previous study, 'response surface methodology (RSM) using a fullest balanced model' was proposed to improve the optimization of food processing when a standard second-order model has a significant lack of fit. However, that methodology can be used when each factor of the experimental design has five levels. In response surface experiments for optimization, not only five-level designs, but also three-level designs are used. Therefore, the present study aimed to improve the optimization of food processing when the experimental factors have three levels through a new approach to RSM. This approach employs three-step modeling based on a second-order model, a balanced higher-order model, and a balanced highest-order model. The dataset from the experimental data in a three-level, two-factor central composite design in a previous research was used to illustrate three-step modeling and the subsequent optimization. The proposed approach to RSM predicted improved results of optimization, which are different from the predicted optimization results in the previous research.