• 제목/요약/키워드: fuller's ideal gradation curve

검색결과 2건 처리시간 0.016초

The effect of fly ash/slag on the property of reactive powder mortar designed by using Fuller's ideal curve and error function

  • Hwang, C.L.;Hsieh, S.L.
    • Computers and Concrete
    • /
    • 제4권6호
    • /
    • pp.425-436
    • /
    • 2007
  • This study is mainly focused on applying Fuller's ideal gradation curve to theoretically design blended ratio of all solid materials of a reactive powder mortar (RPM), also known as reactive powder concrete (RPC), with the aid of error function, and then to study the effect of fly ash/slag on the performance of RPM. The solid particle is assumed to be spherical particles. Then, the void volume of paste ($V_{\nu}$) and the paste content with specific quality can be obtained. As conclusion, under Fuller's ideal grading curve, the amount of fly ash/slag mixture is higher than that with silica fume along due to it better filled the void within solid particle and obtains higher packing density.

Application of Fuller's ideal curve and error function to making high performance concrete using rice husk ash

  • Hwang, Chao-Lung;Bui, Le Anh-Tuan;Chen, Chun-Tsun
    • Computers and Concrete
    • /
    • 제10권6호
    • /
    • pp.631-647
    • /
    • 2012
  • This paper focuses on the application of Fuller's ideal gradation curve to theoretically design blended ratio of all solid materials of high performance concrete (HPC), with the aid of error function, and then to study the effect of rice husk ash (RHA) on the performance of HPC. The residual RHA, generated when burning rice husk pellets at temperatures varying from 600 to $800^{\circ}C$, was collected at steam boilers in Vietnam. The properties of fresh and hardened concrete are reviewed. It is possible to obtain the RHA concrete with comparable or better properties than those of the specimen without RHA with lower cement consumption. High flowing concrete designed by the proposed method was obtained without bleeding or segregation. The application of the proposed method for HPC can save over 50% of the consumption of cement and limit the use of water. Its strength efficiency of cement in HPC is 1.4-1.9 times higher than that of the traditional method. Local standards of durability were satisfied at the age of 91 days both by concrete resistivity and ultrasonic pulse velocity.