• 제목/요약/키워드: full-scale section

검색결과 158건 처리시간 0.028초

철근 비부착 및 절단 기법을 사용한 PC 접합부의 실험적 연구 (Experimental Study on the Precast Concrete Joint using Re-bar Debonding and Cutting Technique)

  • 이원호;문정호;이용재;이한준
    • 한국방재학회 논문집
    • /
    • 제2권4호
    • /
    • pp.131-141
    • /
    • 2002
  • 지하주차장을 PC화할 때 각각의 부재 접합상태에 따라 설계방법 및 시공방법에 많은 차이가 발생하게 된다. 특히 PC 벽체를 상호 연결하기 위한 접합부에서 수평철근을 겹침이음 방법에 의해 접합하는 경우, 수평철근의 이음길이를 충분히 확보하여야 하기 때문에 시공성이 저하되는 문제점이 있다. 따라서, PC 벽체 수평철근의 돌출길이를 최소화하기 위하여 철근 비부착 기법 및 철근 절단 기법을 적용하는 것을 본 연구의 목적으로 하고 있다. 즉, 철근 콘크리트 부재에서의 위험단면의 위치는 일반적으로 부재의 단부가 되고, 철근의 정착길이는 이 위험단면으로부터의 길이가 된다. 그런데 위험단면의 위치를 비부착 철근 공법 및 철근 절단 공법을 사용하여 부재 안쪽으로 이동함으로서, 수평철근의 정착길이를 최소화시킬 수 있다. 본 연구에서는 철근 비부착 기법 및 철근 절단 기법의 적용 가능성을 파악하기 위해 5개의 실험체를 실물크기로 제작하여 실험적 연구를 실시하고, 절단 철근 및 비부착 철근이 시험체의 거동에 미치는 영향을 비교 및 분석한 결과, 위험단면의 이동을 위하여 철근 비부착 기법 및 철근 절단 기법의 사용이 가능한 것으로 판단된다.

집성재 단면구성에 따른 휨성능 평가 (Evaluation of the Bending Properties of Glulam with Different Cross-Section)

  • 이전제;김광모;한재수;김재건
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권5호
    • /
    • pp.65-71
    • /
    • 2003
  • 본 연구에서는 몇 가지 새로운 집성재 단면구성 방법을 제안하고, 국산 낙엽송과 합판으로 제조된 집성재의 휨시험을 통해 단면 구성에 따른 집성재의 휨성능을 평가 비교하였다. 수평적층(BH), 수직적층(BVN), 수직으로 합판보강된 수직적층(BVV)과 수평으로 합판보강된 수직적층(BVH)의 총 네가지 형태의 단면구성 방법에 대하여 실험을 실시하였다. 파괴모드를 관찰하고, 실험을 통해 얻어진 하중-변형 곡선으로부터 MOR 및 MOE를 계산하여 이를 바탕으로 각 단면구성 방법의 휨성능 개선효과를 비교하였다. MOR의 경우에는 결함의 분산으로 인해 수직적층에서 수평적층에 비해 23% 정도의 개선효과를 얻을 수 있었으나, MOE의 경우에는 거의 유사한 값을 나타내었다. 수평으로 합판보강된 경우에는 상대적으로 휨성능이 약한 합판이 사용됨에 따라 MOE가 15% 정도 감소하였으나, 수직으로 합판보강된 경우에는 합판이 사용되었음에도 불구하고 MOE의 감소 없이 MOR이 개선되는 효과를 나타내었는데 이는 전단보강의 효과로 생각되며 이러한 효과를 파괴모드의 관찰을 통해서도 확인하였다. 이상의 결과로부터 집성보의 단면 구성시 라미나의 적절한 배치 및 전단보강 등을 통하여 전체적인 휨성능을 향상시킬 수 있음을 확인하였다.

Hysteretic behaviour of circular tubular T-joints with local chord reinforcement

  • Shao, Y.B.;Wang, Y.M.;Yang, D.P.
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1017-1029
    • /
    • 2016
  • When a welded circular hollow section (CHS) tubular joint is subjected to brace axial loading, failure position is located usually at the weld toe on the chord surface due to the weak flexural stiffness of the thin-walled chord. The failure mode is local yielding or buckling in most cases for a tubular joint subjected to axial load at the brace end. Especially when a cyclic axial load is applied, fracture failure at the weld toe may occur because both high stress concentration and welding residual stress along the brace/chord intersection cause the material in this region to become brittle. To improve the ductility as well as to increase the static strength, a tubular joint can be reinforced by increasing the chord thickness locally near the brace/chord intersection. Both experimental investigation and finite element analysis have been carried out to study the hysteretic behaviour of the reinforced tubular joint. In the experimental study, the hysteretic performance of two full-scale circular tubular T-joints subjected to cyclic load in the axial direction of the brace was investigated. The two specimens include a reinforced specimen by increasing the wall thickness of the chord locally at the brace/chord intersection and a corresponding un-reinforced specimen. The hysteretic loops are obtained from the measured load-displacement curves. Based on the hysteretic curves, it is found that the reinforced specimen is more ductile than the un-reinforced one because no fracture failure is observed after experiencing similar loading cycles. The area enclosed by the hysteretic curves of the reinforced specimen is much bigger, which shows that more energy can be dissipated by the reinforced specimen to indicate the advantage of the reinforcing method in resisting seismic action. Additionally, finite element analysis is carried out to study the effect of the thickness and the length of the reinforced chord segment on the hysteretic behaviour of CHS tubular T-joints. The optimized reinforcing method is recommended for design purposes.

Rotation capacity of composite beam connected to RHS column, experimental test results

  • Eslami, Mohammadreza;Namba, Hisashi
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.141-159
    • /
    • 2016
  • Commonly in steel frames, steel beam and concrete slab are connected together by shear keys to work as a unit member which is called composite beam. When a composite beam is subjected to positive bending, flexural strength and stiffness of the beam can be increased due to "composite action". At the same time despite these advantages, composite action increases the strain at the beam bottom flange and it might affect beam plastic rotation capacity. This paper presents results of study on the rotation capacity of composite beam connected to Rectangular Hollow Section (RHS) column in the steel moment resisting frame buildings. Due to out-of-plane deformation of column flange, moment transfer efficiency of web connection is reduced and this results in reduction of beam plastic rotation capacity. In order to investigate the effects of width-to-thickness ratio (B/t) of RHS column on the rotation capacity of composite beam, cyclic loading tests were conducted on three full scale beam-to-column subassemblies. Detailed study on the different steel beam damages and concrete slab damages are presented. Experimental data showed the importance of this parameter of RHS column on the seismic behavior of composite beams. It is found that occurrence of severe concrete bearing crush at the face of RHS column of specimen with smaller width-to-thickness ratio resulted in considerable reduction on the rate of strain increase in the bottom flange. This behavior resulted in considerable improvement of rotation capacity of this specimen compared with composite and even bare steel beam connected to the RHS column with larger width-to-thickness ratio.

도로동공 탐지를 위한 지표투과레이더의 적정 주파수 선정에 관한 연구 (Determining the Optimal Frequency of Ground Penetrating Radar for Detecting Voids in Pavements)

  • 김연태;김부일;김제원;박희문;윤진성
    • 한국도로학회논문집
    • /
    • 제18권2호
    • /
    • pp.37-42
    • /
    • 2016
  • PURPOSES : The objective of this study is to determine the optimal frequency of ground penetrating radar (GPR) testing for detecting the voids under the pavement. METHODS : In order to determine the optimal frequency of GPR testing for void detection, a full-scale test section was constructed to simulate the actual size of voids under the pavement. Voids of various sizes were created by inserting styrofoam at varying depths under the pavement. Subsequently, 250-, 500-, and 800-MHz ground-coupled GPR testing was conducted in the test section and the resulting GPR signals were recorded. The change in the amplitude of these signals was evaluated by varying the GPR frequency, void size, and void depth. The optimum frequency was determined from the amplitude of the signals. RESULTS: The capacity of GPR to detect voids under the pavement was evaluated by using three different ground-coupled GPR frequencies. In the case of the B-scan GPR data, a parabolic shape occurred in the vicinity of the voids. The maximum GPR amplitude in the A-scan data was used to quantitatively determine the void-detection capacity. CONCLUSIONS: The 250-MHz GPR testing enabled the detection of 10 out of 12 simulated voids, whereas the 500-MHz testing allowed the detection of only five. Furthermore, the amplitude of GPR detection associated with 250-MHz testing is significantly higher than that of 500-MHz testing. This indicates that 250-MHz GPR testing is well-suited for the detection of voids located at depths ranging from 0.5~2.0 m. Testing at frequencies lower than 250 MHz is recommended for void detection at depths greater than 2 m.

열저항 네트워크 모델을 이용한 LNG 화물창 Scale Effect 분석 (Scale Effect Analysis of LNG Cargo Containment System Using a Thermal Resistance Network Model)

  • 유화롱;김태훈;김창현;김민창;김명배;한용식;듀이;정경열;최병일;도규형
    • 대한조선학회논문집
    • /
    • 제60권4호
    • /
    • pp.222-230
    • /
    • 2023
  • In the present work, the scale effect on the Boil-Off Rate (BOR) was investigated based on an analytical method to systematically evaluate the thermal performance of a Liquefied Natural Gas (LNG) Cargo Containment System (CCS). A two-dimensional thermal resistance network model was developed to accurately estimate the heat ingress into the CCS from the outside. The analysis was performed for the KC-1 LNG membrane tank under the IGC and USCG design conditions. The ballast compartment of both the LNG tank and cofferdam was divided into six sections and a thermal resistance network model was made for each section. To check the validity of the developed model, the analysis results were compared with those from existing literature. It was shown that the BOR values under the IGC and USCG design conditions were agreed well with previous numerical results with a maximum error of 1.03% and 0.60%, respectively. A SDR, the scale factor of the LNG CCS was introduced and the BOR, air temperature of the ballast compartment, and the surface temperature of the inner hull were obtained to examine the influence of the SDR on the thermal performance. Finally, a correlation for the BOR was proposed, which could be expressed as a simple formula inversely proportional to the SDR. The proposed correlation could be utilized for predicting the BOR of a full-scale LNG tank based on the BOR measurement data of lab-scale model tanks.

바닥슬래브에 의해 구속된 철골 모멘트접합부의 내진보강에 관한 실험적 연구 (Experimental Study on Seismic Retrofit of Steel Moment Connections Considering Constraint Effect of the Floor Slab)

  • 오상훈;김영주;문태섭
    • 한국강구조학회 논문집
    • /
    • 제16권2호통권69호
    • /
    • pp.247-255
    • /
    • 2004
  • 본 실험프로그램은 슬래브가 있는 합성보의 내진성능향상을 위해 기존 모멘트접합부의 내진보강 방법을 개발을 목적으로 수행하였다. 반복하중을 통해 5개의 실대형 합성실험체에 대한 실험을 수행하였다. 각형강관기둥과 H형강보로 이루어진 기존의 다이아프램접합부가 RBS 또는 개량수평스티프너를 통해서 하부플랜지에만 내진 보강되었다. 제안한 보강접합부의 효율성을 조사하였다. 실험결과 하부플랜지에만 RBS를 적용한 접합부는 부족한 변형성능을 나타냈지만, 개량스티프너를 적용한 합성보 접합부는 내진성능을 향상시켰다.

참조응력개념을 이용한 국부감육배관 평가법 개발 (Development of Assessment Methodology for Locally Corroded Pipe Using Reference Stress Concept)

  • 임환;심도준;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1200-1209
    • /
    • 2003
  • In this paper, a unified methodology based on the local stress concept to estimate residual strength of locally thinned pipes. An underlying idea of the proposed methodology is that the local stress in the minimum section for locally thinned pipe is related to the reference stress, popularly used in creep problems. Then the problem remains how to define the reference stress, that is the reference load. Extensive three-dimensional finite element (FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Based on these FE results, the reference load is proposed, which is independent of materials. A natural outcome of this method is the maximum load capacity. By comparing with existing test results, it is shown that the reference stress is related to the fracture stress, which in turn can be posed as the fracture criterion of locally thinned pipes. The proposed method is powerful as it can be easily generalised to more complex problems, such as pipe bends and tee-joints.

Experimental and finite element parametric investigations of the thermal behavior of CBGB

  • Numan, Hesham A.;Taysi, Nildim;Ozakca, Mustafa
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.813-832
    • /
    • 2016
  • This research deals with the behavior of Composite Box Girder Bridges (CBGBs) subjected to environmental effects such as solar radiation, atmospheric temperature, and wind speed. It is based on temperature and thermal stress results, which were recorded hourly from a full-scale experimental CBGB segment and Finite Element (FE) thermal analysis. The Hemi-cube method was adopted to achieve the accuracy in temperature distributions and variations in a composition system during the daily environmental variations. Analytical findings were compared with the experimental measurements, and a good agreement was found. On the other hand, parametric investigations are carried out to investigate the effect of the cross-section geometry and orientation of the longitudinal axis of CBGB on the thermal response and stress distributions. Based upon individual parametric investigations, some remarks related to the thermal loading parameters were submitted. Additionally, some observations about the CBGB configurations were identified, which must be taken into account in the design process. Finally, this research indicates that the design temperature distribution with a uniform differential between the concrete slab and the steel girder is inappropriate for describing the thermal impacts in design objective.

Behavior of Concrete/Cold Formed Steel Composite Beams: Experimental Development of a Novel Structural System

  • Wehbe, Nadim;Bahmani, Pouria;Wehbe, Alexander
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권1호
    • /
    • pp.51-59
    • /
    • 2013
  • The use of light-gauge steel framing in low-rise commercial and industrial building construction has experienced a significant increase in recent years. In such construction, the wall framing is an assembly of cold-formed steel (CFS) studs held between top and bottom CFS tracks. Current construction methods utilize heavy hot-rolled steel sections, such as steel angles or hollow structural section tubes, to transfer the load from the end seats of the floor joist and/or from the load-bearing wall studs of the stories above to the supporting load-bearing wall below. The use of hot rolled steel elements results in significant increase in construction cost and time. Such heavy steel elements would be unnecessary if the concrete slab thickening on top of the CFS wall can be made to act compositely with the CFS track. Composite action can be achieved by attaching stand-off screws to the track and encapsulating the screw shank in the deck concrete. A series of experimental studies were performed on full-scale test specimens representing concrete/CFS flexural elements under gravity loads. The studies were designed to investigate the structural performance of concrete/CFS simple beams and concrete/CFS continuous headers. The results indicate that concrete/CFS composite flexural elements are feasible and their structural behavior can be modeled with reasonable accuracy.