• Title/Summary/Keyword: full-scale measurements

Search Result 151, Processing Time 0.027 seconds

Deformation Measurement of Roadbed in Full-scale Field Test to Determine an Optimum Trackbed of High-Speed Railway (고속철도 노반의 최적단면 결정을 위한 실대형 모형시험에서의 노반 변형 계측)

  • Jung, Young-Hoon;Kim, Hak-Sung;Byeon, Bo-Hyeon;Lee, Jin-Wook
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2821-2829
    • /
    • 2011
  • Since the KTX was in operation in 2004, a number of researches on increasing the train speed have been conducted. Currently, the Honam High-speed train system is designed for the operation velocity of 350km/h. The societal demand expects higher operation speed, whereas the existing construction method and design specification are questioned in the KTX operation in the velocity over 350 km/h. In this study, a full-scale model test was conducted to obtain the preliminary data that is necessary to understand deformation characteristics of the reinforced road bed and the subgrade layers. In the full-scale model test, direct arrival seismic tests, crosshole seimic test, in-situ bender element test and sensing bar test were employed to measure the stiffness and deformation of the trackbed. The systematic analysis on the different set of measurements enhances the understanding of the behavior of the trackbed.

  • PDF

Comparison of several computational turbulence models with full-scale measurements of flow around a building

  • Wright, N.G.;Easom, G.J.
    • Wind and Structures
    • /
    • v.2 no.4
    • /
    • pp.305-323
    • /
    • 1999
  • Accurate turbulence modeling is an essential prerequisite for the use of Computational Fluid Dynamics (CFD) in Wind Engineering. At present the most popular turbulence model for general engineering flow problems is the ${\kappa}-{\varepsilon}$ model. Models such as this are based on the isotropic eddy viscosity concept and have well documented shortcomings (Murakami et al. 1993) for flows encountered in Wind Engineering. This paper presents an objective assessment of several available alternative models. The CFD results for the flow around a full-scale (6 m) three-dimensional surface mounted cube in an atmospheric boundary layer are compared with recently obtained data. Cube orientations normal and skewed at $45^{\circ}$ to the incident wind have been analysed at Reynolds at Reynolds number of greater than $10^6$. In addition to turbulence modeling other aspects of the CFD procedure are analysed and their effects are discussed.

Performance of Tall Buildings in Urban Zones: Lessons Learned from a Decade of Full-Scale Monitoring

  • Kijewski-Correa, T.;Kareem, A.;Guo, Y.L.;Bashor, R.;Weigand, T.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.179-192
    • /
    • 2013
  • The lack of systematic validation for the design process supporting tall buildings motivated the authors' research groups and their collaborators to found the Chicago Full-Scale Monitoring Program over a decade ago. This project has allowed the sustained in-situ observation of a collection of tall buildings now spanning worldwide. This paper overviews this program and the lessons learned in the process, ranging from appropriate technologies for response measurements to the factors influencing accurate prediction of dynamic properties all the way to how these properties then influence the prediction of response using wind tunnel testing and whether this response does indeed correlate with in-situ observations. Through this paper, these wide ranging subjects are addressed in a manner that demonstrates the importance of continued promotion and expansion of full-scale monitoring efforts and the ways in which these programs can provide true value-added to building owners and managers.

Peak pressures on low rise buildings: CFD with LES versus full scale and wind tunnel measurements

  • Aly, Aly Mousaad;Gol-Zaroudi, Hamzeh
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.99-117
    • /
    • 2020
  • This paper focuses on the processes of wind flow in atmospheric boundary layer, to produce realistic full scale pressures for design of low-rise buildings. CFD with LES turbulence closure is implemented on a scale 1:1 prototype building. A proximity study was executed computationally in CFD with LES that suggests new recommendations on the computational domain size, in front of a building model, apart from common RANS-based guidelines (e.g., COST and AIJ). Our findings suggest a location of the test building, different from existing guidelines, and the inflow boundary proximity influences pressure correlation and reproduction of peak loads. The CFD LES results are compared to corresponding pressures from open jet, full scale, wind tunnel, and the ASCE 7-10 standard for roof Component & Cladding design. The CFD LES shows its adequacy to produce peak pressures/loads on buildings, in agreement with field pressures, due to its capabilities of reproducing the spectral contents of the inflow at 1:1 scale.

The measured contribution of whipping and springing on the fatigue and extreme loading of container vessels

  • Storhaug, Gaute
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1096-1110
    • /
    • 2014
  • Whipping/springing research started in the 50'ies. In the 60'ies inland water vessels design rules became stricter due to whipping/springing. The research during the 70-90'ies may be regarded as academic. In 2000 a large ore carrier was strengthened due to severe cracking from North Atlantic operation, and whipping/springing contributed to half of the fatigue damage. Measurement campaigns on blunt and slender vessels were initiated. A few blunt ships were designed to account for whipping/springing. Based on the measurements, the focus shifted from fatigue to extreme loading. In 2005 model tests of a 4,400 TEU container vessel included extreme whipping scenarios. In 2007 the 4400 TEU vessel MSC Napoli broke in two under similar conditions. In 2009 model tests of an 8,600 TEU container vessel container vessel included extreme whipping scenarios. In 2013 the 8,100 TEU vessel MOL COMFORT broke in two under similar conditions. Several classification societies have published voluntary guidelines, which have been used to include whipping/springing in the design of several container vessels. This paper covers results from model tests and full scale measurements used as background for the DNV Legacy guideline. Uncertainties are discussed and recommendations are given in order to obtain useful data. Whipping/springing is no longer academic.

A Study on Buffeting Responses of a In-service Steel Cable-stayed Bridge Using Full-scale Measurements (실측 데이터를 이용한 공용중인 강사장교의 버페팅 응답 분석)

  • Lee, Deok Keun;Kong, Min Joon;You, Dong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.349-359
    • /
    • 2016
  • In order to analytically evaluate buffeting responses, the analysis of wind characteristics such as turbulence intensity, turbulence length, gust, roughness coefficient, etc must be a priority. Static aerodynamic force coefficients, flutter coefficients, structural damping ratios, aerodynamic damping ratios and natural frequencies affect the analytical responses. The bridge interested in this paper has being been used for 32 years. As the time passes, current terrain conditions around the bridge are different markedly from the conditions it was built 32 years ago. Also, wind environments were considerably varied by the climate change. For this reason, it is necessary to evaluate the turbulence intensity, length, spectrum and roughness coefficient of the bridge site from full-scale measurements using the structural health monitoring system. The evaluation results indicate that wind characteristics of bridge site is analogous to that of open terrain although the bridge is located on the coastal area. To calculate buffeting responses, the analysis variables such as damping ratios, static aerodynamic force coefficients and natural frequency were evaluated from measured data. The analysis was performed with regard to 4 cases. The evaluated variables from measured data are applied to the first and second analysis cases. And the other analysis cases were performed based on Design Guidelines for Steel Cable Supported Bridges. The calculated responses of each analysis cases are compared with the buffeting response measured at less than 25m/s wind speed. It is verified that the responses by the numerical analysis applying the estimated variables based on full-scale measurements are well agreed with the measured actual buffeting responses under wind speed 25m/s. Also, the extreme wind speed corresponding to a recurrence interval 200 years is derived from Gumbel distribution. The derived wind speed for return period of 200 years is 45m/s. Therefore the buffeting responses at wind speed 45m/s is determined by the analysis applying the estimated variables.

Full-scale measurements of wind effects and modal parameter identification of Yingxian wooden tower

  • Chen, Bo;Yang, Qingshan;Wang, Ke;Wang, Linan
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.609-627
    • /
    • 2013
  • The Yingxian wooden tower in China is currently the tallest wooden tower in the world. It was built in 1056 AD and is 65.86 m high. Field measurements of wind speed and wind-induced response of this tower are conducted. The wind characteristics, including the average wind speed, wind direction, turbulence intensity, gust factor, turbulence integral length scale and velocity spectrum are investigated. The power spectral density and the root-mean-square wind-induced acceleration are analyzed. The structural modal parameters of this tower are identified with two different methods, including the Empirical Mode Decomposition (EMD) combined with the Random Decrement Technique (RDT) and Hilbert transform technique, and the stochastic subspace identification (SSI) method. Results show that strong wind is coming predominantly from the West-South of the tower which is in the same direction as the inclination of the structure. The Von Karman spectrum can describe the spectrum of wind speed well. Wind-induced torsional vibration obviously occurs in this tower. The natural frequencies identified by EMD, RDT and Hilbert Transform are close to those identified by SSI method, but there is obvious difference between the identified damping ratios for the first two modes.

A comparison of numerical simulations and full-scale measurements of snowdrifts around buildings

  • Thiis, Thomas K.
    • Wind and Structures
    • /
    • v.3 no.2
    • /
    • pp.73-81
    • /
    • 2000
  • Snowdrifts around buildings can cause serious problems when formed on undesirable places. The formation of snowdrifts is highly connected to the wind pattern around the building, and the wind pattern is again dependent on the building design. The shear stress on the surface and snowdrifting around different buildings are investigated through CFD analysis and compared to measurements. The computations of shear stress shows local minima in the same areas as snowdrifts are formed. The snowdrifting computations utilises a drift-flux model where a fluid with snow properties is allowed to drift through a fluid with air properties. An apparent dynamic viscosity of the snow/air mixture is defined and used as a threshold criterion for snowdrifting. The results from the snowdrifting computations show increased snow density where snowdrifts are expected, and are in agreement with previous large-scale snowdrift measurements. The results show that computational fluid dynamics can be a tool for planning building design in snowdrifting areas.

CFD validation and grid sensitivity studies of full scale ship self propulsion

  • Jasak, Hrvoje;Vukcevic, Vuko;Gatin, Inno;Lalovic, Igor
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.33-43
    • /
    • 2019
  • A comparison between sea trial measurements and full-scale CFD results is presented for two self-propelled ships. Two ships considered in the present study are: a general cargo carrier at Froude number $F_n=0:182$ and a car carrier at $F_n=0:254$. For the general cargo carrier, the propeller rotation rate is fixed and the achieved speed and trim are compared to sea trials, while for the car carrier, the propeller rotation rate is adjusted to achieve the 80% MCR. In addition, three grids are used for each ship in order to assess the grid refinement sensitivity. All simulations are performed using the Naval Hydro pack based on foam-extend, a community driven fork of the OpenFOAM software. The results demonstrate the possibility of using high-fidelity numerical methods to directly calculate ship scale flow characteristics, including the effects of free surface, non-linearity, turbulence and the interaction between propeller, hull and the flow field.

Friction correction for model ship resistance and propulsion tests in ice at NRC's OCRE-RC

  • Lau, Michael
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.413-420
    • /
    • 2018
  • This paper documents the result of a preliminary analysis on the influence of hull-ice friction coefficient on model resistance and power predictions and their correlation to full-scale measurements. The study is based on previous model-scale/full-scale correlations performed on the National Research Council - Ocean, Coastal, and River Engineering Research Center's (NRC/OCRE-RC) model test data. There are two objectives for the current study: (1) to validate NRC/OCRE-RC's modeling standards in regarding to its practice of specifying a CFC (Correlation Friction Coefficient) of 0.05 for all its ship models; and (2) to develop a correction methodology for its resistance and propulsion predictions when the model is prepared with an ice friction coefficient slightly deviated from the CFC of 0.05. The mean CFC of 0.056 and 0.050 for perfect correlation as computed from the resistance and power analysis, respectively, have justified NRC/OCRE-RC's selection of 0.05 for the CFC of all its models. Furthermore, a procedure for minor friction corrections is developed.