• 제목/요약/키워드: full size grids

검색결과 6건 처리시간 0.023초

경수로용 핵연료집합체 지지격자의 좌굴특성에 관한 연구 (A Study on the Buckling Characteristics of Spacer Grids in Pressurized Water Reactor Fuel Assembly)

  • 전상윤;이영신
    • 한국전산구조공학회논문집
    • /
    • 제18권4호통권70호
    • /
    • pp.405-416
    • /
    • 2005
  • 본 연구에서는 경수로용 핵연료집합체의 전체지지격자(Full Size Grid)와 부분지지격자(Small Size Grid)에 대한 정적 좌굴강도 실험과 전체 지지격자와 부분지지격자를 구성하는 지지격자판(Grid Strap)에 대한 정적 좌굴해석을 수행하여 지지격자의 좌굴특성을 분석하였으며, 분석결과를 이용하여 전체지지격자와 부분지지격자에 대한 좌굴하중값의 예측 가능성을 평가하였다. 좌굴강도 실험은 웨스팅하우스형 연료의 $17{\times}17$셀을 갖는 전체지지격자와 $1{\times}1,\;1{\times}2,\;1{\times}3,\;1{\times}4,\;1{\times}5,\;1{\times}17\;,2{\times}1,\;2{\times}2,\;2{\times}3,\;2{\times}9,\;2{\times}17,\;3{\times}17$ 등의 셀을 갖는 부분지지격자에 대하여 수행하였으며, 실험결과를 이용하여 지지격자의 좌굴강도와 지지격자의 행(rows)과 열(columns) 사이의 관계식을 제시하였다. 좌굴강도 해석은 범용 유한요소해석코드인 ANSYS를 이용하여 수행하였으며, 해석결과를 이용하여 지지격자의 좌굴특성을 분석하고 실험결과와 비교평가 하였다.

선용접방법으로 제작된 $16{\times}16$ 최적화 H형 스프링 지지격자에 대한 진자식충격시험 (Pendulum Impact Tests for 16by16 Through Welded Spacer Grids with Optimized H type Springs)

  • 김재용;윤경호;송기남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1803-1806
    • /
    • 2007
  • The General roles of a spacer grid(SG) are providing a lateral and vertical support for fuel rods, promoting a mixing of coolant and keeping guide tubes straight so as not to impede a control rod insertion under any normal or accidental conditions. To evaluate the impact characteristics of a SG such as impact velocity, critical buckling strength and duration time, a few types of impact tests for SGs have been conducted. In a previous study, a new welding method, a through-welding method, was proposed to increase critical buckling strength of a SG without any design change or material change and was verified by impact tests with $7{\times}7$ partial SG specimens.In this paper, the effect of through-welding method in case of a $16{\times}16$ full-size SG is investigated by pendulum impact tests with $16{\times}16$ SG specimens. And the increase of critical buckling strength for full-size SGs is measured by comparison with impact results of spot-welded and through-welded SGs.

  • PDF

15kW-class wave energy converter floater design and structural analysis

  • Singh, Patrick Mark;Chen, Zhenmu;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.146-151
    • /
    • 2016
  • This study concentrates on the design of floater for 15kW-class wave energy converter that extracts the ocean energy by oscillating vertically along the wave motion. The floater connects to a arm structure that connects to a hydraulic cylinder, which drives a hydraulic generator. The study mainly focuses on the structural analysis of the floater. Previous studies have been conducted using a miniature model; however, this study focuses on the size selection of the floater for a full scale model. Static structural analysis is conducted using fine numerical grids. Due to the complexity of the whole model, it is analyzed as a separate component. There are several load cases for each floater size, and they are analyzed thoroughly for stress (von-mises, shear, and normal) and deformation. The initial design was conducted by scaling up from the miniature model of the previous study, and the final design has been redesigned by changing the thickness and internal support structure shape.

격자 지지구조체에 묶여있는 실린더 형 봉의 삽입위치에 따른 진동특성 (Vibration Characteristic of a Cylindrical Rod according to the Mounting Locations on the Grid Support Structure)

  • 이강희;윤경호;송기남;김재용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.515-518
    • /
    • 2006
  • A vibration test for a cylindrical rod inserted on the grid support structure was tested using the sine sweep excitation method with closed loop force control. The effect of the mounting location of a test rod on the vibration characteristics of a rod continuously supported by the full size($16{\times}16$) grid support was identified. An electromagnetic vibration shaker, non-contact displacement sensor and HP/VXI data acquisition device were used and TDAS software was also used as a data sampling and processing tools. The natural frequencies and mode shape of the test rod were consistent with the previous works of a rod vibration test with partial grids($3{\times}3,\;5{\times}5\;and\;7{\times}7$). The frequency characteristics of the rod according to the mounting location were shown clear discrepancies, but mode shapes were nearly same. As the test rod closes to the bottom clamping region of the spacer grid, peak vibration amplitudes of the rod become smaller.

  • PDF

Seismic interactions between suspended ceilings and nonstructural partition walls

  • Huang, Wen-Chun;McClure, Ghyslaine;Hussainzada, Nahidah
    • Coupled systems mechanics
    • /
    • 제2권4호
    • /
    • pp.329-348
    • /
    • 2013
  • This study aims at observing the coupling behaviours between suspended ceilings and partition walls in terms of their global seismic performance using full-scale shake table tests. The suspended ceilings with planar dimensions of $6.0m{\times}3.6m$ were tested with two types of panels: acoustic lay-in and metal clip-on panels. They were further categorized as seismic-braced, seismic-unbraced, and non-seismic installations. Also, two configurations of 2.7 m high partition wall specimens, with C-shape and I-shape in the plane layouts, were tested. In total, seven ceiling-partition-coupling (CPC) specimens were tested utilizing a unidirectional seismic simulator. The test results indicate that the damage patterns of the tested CPC systems included failure of the ceiling grids, shearing-off of the wall top railing, and, most destructively, numerous partial detachments and falling of the ceiling panels. The loss of panels was mostly concentrated near the center of the tested partition wall. The testing results also confirmed that the failure mode of the non-seismic CPC systems was brittle: The whole system would collapse suddenly all at once when the magnitude of the inputs hit the capacity threshold, rather than displaying progressive damage. Overall, the seismic capacity of the unbraced and braced CPC systems could be up to 1.23 g and 2.67 g, respectively; these accelerations were both achieved at the base of the partition wall. Nonetheless, for practical applications, it is noteworthy that the three-dimensional nature of seismic excitations and the size effect of the ceiling area are parameters that exacerbate the CPC's seismic response so that their actual capacity may be dramatically decreased, leading to important losses even in moderate seismic events.

FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

  • Gim, Gyun-Ho;Chang, Se-Myoung;Lee, Sinyoung;Jang, Gangwon
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.633-640
    • /
    • 2014
  • In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics) technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI). The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency) of pump, and fluid-structure interaction.