• 제목/요약/키워드: full scale experiments

검색결과 189건 처리시간 0.026초

NUMBER OF CYCLES IN EVOLUTIONARY OPERATION

  • Lim, Yong-B.;Park, Sung-H.
    • Journal of the Korean Statistical Society
    • /
    • 제36권2호
    • /
    • pp.201-208
    • /
    • 2007
  • Evolutionary operation (EVOP) proposed by Box (1957) is a method for continuous monitoring and improvement of a full-scale manufacturing process with the objective of moving the operating conditions toward the better ones. EVOP consists of systematically making small changes in the levels of the two or three process variables under consideration. Data are collected on the response variable at each point of two level factorial design with the center point and a cycle is said to have been completed. The cycles are replicated sequentially until the decision is made on whether further cycle of experiments is needed to conclude the significance of any of main effects or interaction effects or the curvature. In this paper, an improved flow chart of EVOP is proposed and how to determine the number of cycles is studied based on the size of type II error. In order to reject the alternative hypothesis of interests with more confidence and conclude that we believe in the null hypothesis of no effects, we propose a counter measure $p^*-value$ corresponding to the p-value. The relationship of $p^*-value$ to the probability of type II error ${\beta}$ under the alternative hypothesis of interests is analogous to that of p-value to the probability of type I error ${\alpha}$. Also the implementation of EVOP with a mixture experiment is discussed.

Service Quality Design through a Smart Use of Conjoint Analysis

  • Barone, Stefano;Lombardo, Alberto
    • International Journal of Quality Innovation
    • /
    • 제5권1호
    • /
    • pp.34-42
    • /
    • 2004
  • In the traditional use of conjoint analysis, in order to evaluate the relative importance of several elements composing a service, interviewed customers are asked to express their judgement about different scenarios (specific combinations of elements). In order to reduce the number of possible scenarios, design of experiments methodology is usually exploited. Previous experiences show that, even a limited number of proposed scenarios cause difficulty in answering for the interviewed customer if the scenarios differ for elements of very low interest to him/her. Consequently, a high rate of abandon of the interview has been observed. In this study it is assumed that a service can be decomposed in several improvable elements and/or enriched with new "optionals". In both cases, what under study is assumed to be a set of dichotomous attributes. For each of these attributes, its marginal contribution to customer satisfaction has to be modelled and estimated. To obtain the required information, an opportune questionnaire is proposed to a sample of interviewed customers. An interviewing procedure consisting in a customer driven design of scenarios is followed, starting from the full-optional scenario and eliminating one by one the less satisfying elements. For each interviewed customer, a ranking of attributes is so obtained. Then, by asking the interviewed customer to evaluate on a metric scale the scenarios he previously selected, a rating of attributes can also be obtained. A case study conducted in collaboration with a public transportation company is presented. Contrarily to previous experiences, the abandon rate proved extremely reduced.y reduced.

Loading capacity evaluation of composite box girder with corrugated webs and steel tube slab

  • He, Jun;Liu, Yuqing;Xu, Xiaoqing;Li, Laibin
    • Structural Engineering and Mechanics
    • /
    • 제50권4호
    • /
    • pp.501-524
    • /
    • 2014
  • This paper presents a type of composite box girder with corrugated webs and concrete filled steel tube slab to overcome cracking on the web and reduce self-weight. Utilizing corrugated steel web improves the efficiency of prestressing introduced into the top and bottom slabs due to the accordion effect. In order to understand the loading capacity of such new composite structure, experimental and numerical analyses were conducted. A full-scale model was loaded monotonically to investigate the deflection, strain distribution, loading capacity and stiffness during the whole process. The experimental results show that test specimen has enough loading capacity and ductility. Based on experimental works, a finite element (FE) model was established. The load-displacement curves and stress distribution predicted by FE model agree well with that obtained from experiments, which demonstrates the accuracy of proposed FE model. Moreover, simplified theoretical analysis was conducted depending on the assumptions which were confirmed by the experimental and numerical results. The simplified analysis results are identical with the tested and numerical results, which indicate that simplified analytical model can be used to predict the loading capacity of such composite girder accurately. All the findings of present study may provide reference for the application of such structure in bridge construction.

Energy-based damage-control design of steel frames with steel slit walls

  • Ke, Ke;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1157-1176
    • /
    • 2014
  • The objective of this research is to develop a practical design and assessment approach of steel frames with steel slit walls (SSWs) that focuses on the damage-control behavior to enhance the structural resilience. The yielding sequence of SSWs and frame components is found to be a critical issue for the damage-control behavior and the design of systems. The design concept is validated by the full-scale experiments presented in this paper. Based on a modified energy-balance model, a procedure for designing and assessing the system motivated by the framework regarding the equilibrium of the energy demand and the energy capacity is proposed. The damage-control spectra constructed by strength reduction factors calculated from single-degree-of-freedom systems considering the post stiffness are addressed. A quantitative damage-control index to evaluate the system is also derived. The applicability of the proposed approach is validated by the evaluation of example structures with nonlinear dynamic analyses. The observations regarding the structural response and the prediction during selected ground motions demonstrate that the proposed approach can be applied to damage-control design and assessment of systems with satisfactory accuracy.

Theoretical and experimental study on load-carrying capacity of combined members consisted of inner and sleeved tubes

  • Hu, Bo;Gao, Boqing;Zhan, Shulin;Zhang, Cheng
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.129-144
    • /
    • 2013
  • Load-carrying capacity of combined members consisted of inner and sleeved tubes subjected to axial compression was investigated in this paper. Considering the initial bending of the inner tube and perfect elasto-plasticity material model, structural behavior of the sleeved member was analyzed by theoretic deduction, which could be divided into three states: the elastic inner tube contacts the outer sleeved tube, only the inner tube becomes plastic and both the inner and outer sleeved tubes become plastic. Curves between axial compressive loads and lateral displacements of the middle sections of the inner tubes were obtained. Then four sleeved members were analyzed through FEM, and the numerical results were consistent with the theoretic formulas. Finally, experiments of full-scale sleeved members were performed. The results obtained from the theoretical analysis were verified against experimental results. The compressive load-lateral displacement curves from the theoretical analysis and the tests are similar and well indicate the point when the inner tube contacts the sleeved tube. Load-carrying capacity of the inner tube can be improved due to the sleeved tube. This paper provides theoretical basis for application of the sleeved members in reinforcement engineering.

다단계 긴장 PSC 거더 철도교량의 고유진동수 및 감쇠비 평가를 위한 동적실험 (Dynamic Experiments of the Incrementally Prestressed Concrete Girder Railway Bridge for Evaluation of Natural Frequencies and Damping Ratios)

  • 김성일;조재열;여인호;이희업;방춘석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.98-101
    • /
    • 2006
  • As an alternative of conventional prestressed concrete (PSC) girders, various types of PSC girders are being developed and applied in bridge structures. Incrementally prestressed concrete girder is one of these newly developed girders. According to design concept, these new types of PSC girders have considerable advantages to reduce their self-weight and make spans longer. However, dynamic interaction between bridge superstructures and passing trains would be sometimes one of critical issues in these more flexible railway bridges. Therefore, it is very important to evaluate modal parameters of newly designed bridges before conducting dynamic analyses. In the present paper, a 25 meters long full scale PSC girder was fabricated as a test specimen and modal testing was carried out to evaluate modal parameters including natural frequencies and modal damping ratios at every prestressing stage. In the modal testing, a digitally controlled vibration exciter as well as an impact hammer is applied to obtain frequency response functions more exactly and the modal parameters are evaluated varying with construction stages. Prestressed force effects on changes of modal parameters are analyzed at every incremental prestressing stage.

  • PDF

상하교차터널의 상호거동에 대한 연구 (A Study of Interactions Between Perpendicularly Spaced Tunnels)

  • Kim, Sang-Hwan;Lee, Hyung-Joo
    • 한국지반공학회논문집
    • /
    • 제19권5호
    • /
    • pp.273-280
    • /
    • 2003
  • 도심지 교통해소를 위한 수단으로 터널구조물의 건설은 날로 증가되는 추세에 있다. 그러나, 새로운 터널구조물이 기존 터널구조물과 인접 또는 교차하여 건설됨에 따른 기존 터널구조물의 운영상의 안정성 확보는 상당히 중요하다. 이에 따라, 이 논문은 기존터널과 인접하여 건설되는 신설터널과의 상호거동에 대한 연구로써, 특히 상하교차터널에 대하여 중점을 두었다. 이 연구는 1g 모형시험을 실시하고 그들 결과의 분석을 통하여 교차터널의 거동에 대한 연구 고찰하였다. 또한 교차터널의 설계방향 제시함으로써 보다 실질적인 교차터널의 설계기술 발전을 위하여 활용되어 질 것으로 판단된다.

Experimental study of masonry infill reinforced concrete frames with and without corner openings

  • Khoshnoud, Hamid Reza;Marsono, Kadir
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.641-656
    • /
    • 2016
  • Reinforced concrete frame buildings with masonry infill walls are one of the most popular structural systems in the world. In most cases, the effects of masonry infill walls are not considered in structural models. The results of earthquakes show that infill walls have a significant effect on the seismic response of buildings. In some cases, the buildings collapsed as a result of the formation of a soft story. This study developed a simple method, called corner opening, by replacing the corner of infill walls with a very flexible material to enhance the structural behavior of walls. To evaluate the proposed method a series of experiments were conducted on masonry infill wall and reinforced concrete frames with and without corner openings. Two 1:4 scale masonry infill walls with and without corner openings were tested under diagonal tension or shear strength and two RC frames with full infill walls and with corner opening infill walls were tested under monotonic horizontal loading up to a drift level of 2.5%. The experimental results revealed that the proposed method reduced the strength of infill wall specimens but considerably enhanced the ductility of infill wall specimens in the diagonal tension test. Moreover, the corner opening in infill walls prevented the slid shear failure of the infill wall in RC frames with infill walls.

A Procedure for Robust Evolutionary Operations

  • Kim, Yongyun B.;Byun, Jai-Hyun;Lim, Sang-Gyu
    • International Journal of Quality Innovation
    • /
    • 제1권1호
    • /
    • pp.89-96
    • /
    • 2000
  • Evolutionary operation (EVOP) is a continuous improvement system which explores a region of process operating conditions by deliberately creating some systematic changes to the process variable levels without jeopardizing the product. It is aimed at securing a satisfactory operating condition in full-scale manufacturing processes, which is generally different from that obtained in laboratory or pilot plant experiments. Information on how to improve the process is generated from a simple experimental design. Traditional EVOP procedures are established on the assumption that the variance of the response variable should be small and stable in the region of the process operation. However, it is often the case that process noises have an influence on the stability of the process. This process instability is due to many factors such as raw materials, ambient temperature, and equipment wear. Therefore, process variables should be optimized continuously not only to meet the target value but also to keep the variance of the response variables as low as possible. We propose a scheme to achieve robust process improvement. As a process performance measure, we adopted the mean square error (MSE) of the replicate response values on a specific operating condition, and used the Kruskal-Wallis test to identify significant differences between the process operating conditions.

  • PDF

K형 가셋트-강관 접합부의 편심접합에 관한 연구 (A Study on Eccentric Joint of K-type Gusset-Tube Connection)

  • 김우범;김갑순;정수영
    • 한국강구조학회 논문집
    • /
    • 제13권1호
    • /
    • pp.81-89
    • /
    • 2001
  • 본 연구에서는 편심률과 세장비가 고려된 가셋트-강관 접합부의 거동 및 극한 강도를 파악하기 위하여 실험 및 유한요소 해석을 수행하였다. 실험체는 가력장치의 용량제한으로 1/3 축소모형 실험체로 제작되었으며, 유한요소해석 모형도 이와 동일한 형태로 설정하였다. 여기서 본 연구이 주된 관심은 횡력에 의한 편심이 접합부 극한 강도에 미치는 영향을 파악하는 것으로 연구결과 세장비, 횡력비 가셋트 플레이트 길이 축소가 가능하 편심접합 사용의 가능성을 파악하였으며, 실험결과와의 비교를 통해 설정된 유한요소해석 모형의 검증도 수행하였다.

  • PDF