• Title/Summary/Keyword: fuel wood

Search Result 240, Processing Time 0.026 seconds

SRF Conversion Potential of Biomass and Mixed Plastic Waste Generated in D City (D시 내에서 발생하는 바이오매스 및 폐플라스틱 혼합 폐기물의 SRF 전환 포텐셜 분석)

  • Yang, Han-Sol;Kim, Ki-Kwang;Lim, Chae-Wook;Hyun, Jae-Hyuk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.3
    • /
    • pp.55-61
    • /
    • 2018
  • This study evaluated if the selected samples meets the Solid Refuse Fuel quality criteria in Korea. Biomass and plastic wastes generated in D City were mixed in diverse ratio. When the biomass content was about 40%, the moisture content was close to the SRF criteria and was measured to be 9.8%. The ash contents were analyzed up to 4.19%, and the lower calorific values based on Steuer, Dulong Equation and Bomb Calorimeter were at least 4,851, 4,181 and 3,847 kcal/kg, respectively. As a result of the elemental analysis, sulfur and chloride content were measured up to 0.05%. Those values satisfied the SRF criteria. Also, heavy metals(Hg, Cd, Pb, As) were analyzed to be below the SRF criteria. This makes it possible to use efficiently the wood byproducts abandoned in the woods, and the physical properties of wood being weak to moisture can be supplemented with plastics. Consequently, if plastic and biomass were well mixed and made into SRF, it would overcome the problem of shortening the life span of incineration facilities due to the high temperature of plastic wastes in the incinerator.

A Study on the Changes in Heavy Metal Emissions when Using Mixed Fuel in a Thermal Power Plant (화력발전소의 혼합연료 사용에 따른 중금속 배출량 변화 연구)

  • Song, Youngho;Kim, Ok;Park, Sanghyun;Lee, Jinheon
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.1
    • /
    • pp.63-75
    • /
    • 2018
  • Objectives: The aim of this research is to explore the total heavy metals from a coal-fired power plant burning bituminous coal with wood pellets due to the implementation of the Renewable Portfolio Standard policy (RPS, 10% of electricity from renewable energy resources by 2023). Methods: The research was carried out by collecting archival data and using the USEPA's AP-42 & EMEP/EEA compilation of emission factors for use in calculating emissions. The Monte Carlo method was also applied for carrying out the calculations of measurement uncertainty. Results: In this paper, the results are listed as follows. Sb was measured at 110 kg (2015) and calculated as 165 kg (2019) and 201 kg (2023). Cr was measured at 1,597 kg (2015) and calculated as 1,687 kg (2019) and 1,728 kg (2023). Cu was measured at 2,888 kg (2015) and calculated as 3,133 kg (2019) and 3,264 kg (2023). Pb was measured at 2,580 kg (2015) and calculated as 2,831 kg (2019) and 2,969 kg (2023). Mn was measured at 3,011 kg (2015) and calculated as 15,034 kg (2019) and 23,014 kg (2023). Hg was measured at 510 kg (2015) and calculated as 513 kg (2019) and 537 kg (2023). Ni was measured at 1,720 kg (2015) and calculated as 1,895 kg (2019) and 1,991 kg (2023). Zn was measured at 7,054 kg (2015) and calculated as 9,938 kg (2019) and 11,778 kg (2023). Se was measured at 7,988 kg (2015) and calculated as 7,663 kg (2019) and 7,351 kg (2023). Conclusion: This shows that most heavy metals would increase steadily from 2015 to 2023. However, Se would decrease by 7.9%. This analysis was conducted with EMEP/EEA's emission factors due to the limited emission factors in South Korea. Co-firewood pellets in coal-fired power plants cause the emission of heavy metals. For this reason, emission factors at air pollution control facilities would be presented and the replacement of wood pellets would be needed.

Evaluating the Properties and Commercializing Potential Of Rape Stalk-based Pellets Produced with a Pilot-scaled Flat-die Pellet Mill (파일럿 규모의 평다이 성형기로 제조한 유채대 펠릿의 연료적 특성 및 상용화 가능성 평가)

  • Sei Chang Oh;In Yang
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.80-86
    • /
    • 2024
  • This study was conducted to evaluate the potential of rape stalk (RAS) as a raw material for the production of solid bio-fuels. RAS was immersed in an aqueous solution with acetic acid concentration of 1 percent, The content of reducing sugars separated from the RAS was analyzed. Glucose showed the highest content followed by xylose, galactose, arabinose and mannose. The immersed and non-immersed RAS were used for producing pellets with a pilot-scaled flat-die pellet mill. Bulk density and calorific values of the pellets improved with the use of the immersed RAS and the addition of wood particles. The values exceeded the minimum requirements for the A-grade of non-woody pellets (≧600 kg/m3 & ≧ 14.5 MJ/kg) designated by the ISO. Ash content of the pellets reduced with the immersion of RAS and the value satisfied the A-grade level (≦6.0%) of the ISO standard. The durability of the immersed RAS-based pellets was much higher than that of non-immersed IRS-based pellets, and the values were increased with the addition of wood particles. However, the durability did not meet the acceptance level for the B-grade of non-woody pellets (≧96.0%) designated by the ISO. These results suggested that the addition of binders in the production of non-woody pellets using an RAS immersed in acetic acid-based aqueous solution is required for the commercialization of the pellets.

A Study on the RDF making Process of Heat-dried Sludge from Cheonan by using Oil-drying Method (유중건조를 이용한 천안시 열건조물의 고형연료화 공정 연구)

  • Park, So-yeon;Kim, Sang-bin;Ha, Jin-wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.660-667
    • /
    • 2018
  • This study examined the optimal manufacturing conditions of RDF using heat-dried sludge from sewage treatment plant in Cheonan with the oil-drying method. The amounts of oil evaporation and oil drying of the heat-dried sludge were measured at different temperatures to evaluate the value of the product. The performance of the product was then measured using a calorimeter and TGA. In addition, the concentration of odor, NH3, H2S, and TVOC during drying was determined using a portable odor-meter. Ingredient analysis was performed by EDS. Considering mass-production, the oil to heat-dried sludge weight ratio was fixed to 4:1. At $130^{\circ}C$, only physical mixing occurred after the instantaneous drying of internal water. Considering the eco-friendly aspects, there was no significant difference in the drying efficiency between $160^{\circ}C$ and $190^{\circ}C$. Therefore, the optimal conditions were a drying temperature of $160^{\circ}C$ within 5 minutes. Finally, the RDF manufactured in this study and fuel used in the thermal power plants were compared. The calorific value was 4,449kcal/kg, the water content was 2% and the ash content was 34%, which is higher than the fuel of thermal power plants. Therefore, it is believed that coal energy as well as wood pellets can be replaced.

Conversion Characteristics of Liquid Fuels from Sawdust by Acetone-Solvolysis (아세톤-용매분해반응에 의한 톱밥으로부터 액체 연료물질의 전환 특성 연구)

  • Yoon, Sung Wook;Lee, Jong-Jib
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.4
    • /
    • pp.231-236
    • /
    • 2014
  • Sawdust, produced as an wood by-product, is usable biomass as liquid fuels if decomposed to monomer unit, because the chemical structure are similar to high octane materials found in gasoline. In this study, parameters of thermochemical degradation by acetone-solvolysis reaction of sawdust such as the effect of reaction temperature, reaction time and type of solvent on conversion yield and degradation products were investigated. The liquid products by acetone-solvolysis from sawdust produced various kind of ketone, phenol and furan compounds. The optimum sawdust conversion was observed to be 88.7% at $350^{\circ}C$, 40min. Combustion heating value of liquid products from thermochemical conversion processes was as high as 7,824 cal/g. The energy yield and mass yield in acetone-solvolysis of sawdust was 60.8% and 36.4 g-oil/100g-sawdust after 40 min of reaction at $350^{\circ}C$, respectively. The major components of the acetone-solvolysis products, that could be used as liquid fuel, were 4-methyl-3-pentene-2-one, 1,3,5-trimethylbezene, 2,6-dimethyl-2,5-heptadiene-4-one, 3-methyl-2-cyclopenten-1-one as ketone compounds.

Anaerobic Bacterial Degradation for the Effective Utilization of Biomass

  • Ohmiya, Kunio;Sakka, Kazuo;Kimura, Tetsuya
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.482-493
    • /
    • 2005
  • Biomass is originally photosynthesized from inorgainic compounds such as $CO_2$, minerals, water and solar energy. Recent studies have shown that anaerobic bacteria have the ability to convert recalcitrant biomass such as cellullosic or chitinoic materials to useful compounds. The biomass containing agricultural waste, unutilized wood and other garbage is expected to utilize as feed, food and fuel by microbial degradation and other metabolic functions. In this study we isolated several anaerobic, cellulolytic and chitinolytic bacteria from rumen fluid, compost and soil to study their related enzymes and genes. The anaerobic and cellulolytic bacteria, Clostridium thermocellum, Clostridium stercorarium, and Clostridium josui, were isolated from compost and the chitinolytic Clostridium paraputrificum from beach soil and Ruminococcus albus was isolated from cow rumen. After isolation, novel cellulase and xylanase genes from these anaerobes were cloned and expressed in Escherichia coli. The properties of the cloned enzymes showed that some of them were the components of the enzyme (cellulase) complex, i.e., cellulosome, which is known to form complexes by binding cohesin domains on the cellulase integrating protein (Cip: or core protein) and dockerin domains on the enzymes. Several dockerin and cohesin polypeptides were independently produced by E. coli and their binding properties were specified with BIAcore by measuring surface plasmon resonance. Three pairs of cohesin-dockerin with differing binding specificities were selected. Two of their genes encoding their respective cohesin polypeptides were combined to one gene and expressed in E. coli as a chimeric core protein, on which two dockerin-dehydrogenase chimeras, the dockerin-formaldehyde dehydrogenase and the dockerin-NADH dehydrogenase are planning to bind for catalyzing $CO_2$ reduction to formic acid by feeding NADH. This reaction may represent a novel strategy for the reduction of the green house gases. Enzymes from the anaerobes were also expressed in tobacco and rice plants. The activity of a xylanase from C. stercorarium was detected in leaves, stems, and rice grain under the control of CaMV35S promoter. The digestibility of transgenic rice leaves in goat rumen was slightly accelerated. C. paraputrificum was found to solubilize shrimp shells and chitin to generate hydrogen gas. Hydrogen productivity (1.7 mol $H_2/mol$ glucos) of the organism was improved up to 1.8 times by additional expression of the own hydrogenase gene in C. paraputrficum using a modified vector of Clostridiu, perfringens. The hydrygen producing microflora from soil, garbage and dried pelletted garbage, known as refuse derived fuel(RDF), were also found to be effective in converting biomass waste to hydrogen gas.

A Study of the Heating Systems used by Korean Compatriot in Russia - Focusing on Yunhaeju, Kazakhstan and Uzbekistan- (러시아에 거주하는 고려인의 난방 방식에 관한 연구 -연해주, 카자흐스탄, 우즈베키스탄을 중심으로-)

  • Lee YoungShim;Cho JaeSoon;Lee SangHae;Joung JaeKook
    • Journal of the Korean Home Economics Association
    • /
    • v.43 no.1 s.203
    • /
    • pp.145-165
    • /
    • 2005
  • In 1937, most Korean compatriot who lived in Yunhaeju moved to Kazakhstan and Uzbekistan in Central Asia following the deportation policy of Russia. Korean compatriot have kept their traditional life style for 140 years, without a deep relationship with Korea. This study examined the heating systems of Korean compatriot in Yunhaeju, Kazakhstan and Uzbekistan, Russia. A literature review and field research, based on Ethnography as a research method, was employed. The results of the research were as following: 1) Korean compatriot in Yunhaeju use a Pechika, which is a radiator that uses hot water, and a Gudul as the main heating systems, but the use of a Pechika was most common. A Pechika functions for cooking as well as for warming the house. The room with the Gudul was connected to the kitchen, so this space was used as a place for cooking and eating, for family members to meet. Many kinds of fuel, like gas and electricity, were used to power the heating systems. 2) Korean compatriot in Kazakhstan use radiators, with hot water as the main heating system, with ratio using Gudul used in this region being the highest of all the three areas. The most common fuels used for a Gudul were wood and coal, and gas was also used in cooking. The room with the Gudul was planned to be located beside the fireplace, without any walls. The people using a Gudul use that place for eating and meeting, as well as for family members to sleep. 3) The main heating system of Korean compatriot in Uzbekistan was a radiator using hot water, and those with pipes containing hot water buried under the floor were very common. The function is very similar to that of a Gudul, so most people using this type of radiator would sleep on the floor. Those people with a traditional Gudul not using them were mostly in Uzbekistan. The reason for this was that the family members had diminished, so it was hard work for elderly parents to manage an extra building containing a Gudul. Gas was the fuel generally used for heating and cooking in Uzbekistan. 4) Guduls were used in the Korean compatriot's houses in all three areas, even though they have changed in structure to adapt to the Russian life style. However, Guduls have still been functioning to maintain a traditional life style in Korean compatriot's houses for the gathering of family members.

Spontaneous Combustion of Various Fuels of Carbonization Rank (탄화도별 발전연료의 자연발화 특성 평가)

  • Kim, Jae-Kwan;Park, Seok-Un;Jeong, Jae-Hyeok;Shin, Dong-Ik;Hong, Jun-Seok;Hong, Jin Pyo
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.78-89
    • /
    • 2017
  • Spontaneous combustion propensity of various coals of carbonization grade as a pulverized fuel of coal fired power plant has been tested from an initial temperature of $25^{\circ}C$ to $600^{\circ}C$ by heated in an oven with air to analyze an self oxidation starting temperature. This tests produce a CPT(Cross Point Temperature), IT(Ignition temperature) and CPS(Cross Point Slope) by calculated as the slope of time taken a rapid exothermic oxidation reaction at CPT base. CPS show a carbonization rank dependence, whereby wood pellet has the highest propensity to spontaneous combustion of $20.995^{\circ}C/min$. A subbituminous KIDECO coal shows an CPS values of $15.370^{\circ}C/min$ whereas it of pet coke of the highest carbonization rank has $20.950^{\circ}C/min$. The nature of this trend is most likely a concentration of volatile matter and oxygen functional groups of coal surface that governs the available component for oxidation as well as surface area of fuel char, and constant pressure molar heat.

Life Cycle Greenhouse Gas Emission Assessment on Locally Generated Kenaf Residue Biomass Fuel in South Korea (EU RED-II 방법론을 적용한 국내 미이용 바이오매스 케나프 펠릿의 전과정 온실가스 배출량 산정)

  • Youn Il Kim;Sun Young Jung;Youngjae Jo;Sung Yoon;Byung Hwan Um
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.258-264
    • /
    • 2023
  • The greenhouse gas (GHG) emission assessment of kenaf pellet, produced from locally generated kenaf residues in South Korea, has been studied based on the EU RED-II methodology for calculating GHG impact of biomass fuels. Based on the production pathway of kenaf residue pellet and emission coefficients from EU JRC report, the life cycle GHG emission of kenaf residue pellet is assessed as 3.0 gCO2eq/MJpellet and the life cycle GHG emission of electricity generated from kenaf residue pellet is assessed as 11.9 gCO2eq/MJ when electrical efficiency of final conversion is 25%. The potential GHG emission reduction of electricity produced from kenaf pellet is 90.3% compared to the domestic electricity emission factor 42.8 kgCO2eq/MWh. Also, the electricity produced from kenaf pellet can reduce at least 59.6% of GHG emission compared to the electricity produced from imported wood pellets.

Biochemical and Molecular Characterization of Laccases from Wild Mushrooms

  • Ro, Hyeon-Su
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.43-43
    • /
    • 2014
  • White rot fungi have been useful source of enzymes for the degradation of environmental pollutants including polycyclic aromatic hydrocarbons (PAHs) and synthetic dyes. PAHs are widespread organic compounds present in fossil fuels and are routinely generated by incomplete fuel combustion. PAHs are some of the major toxic pollutants of water and soil environments. Synthetic dyes are major water-pollutants, which are toxic to organisms in water environments and interfere photosynthesis of water plants. Removal of PAHs and synthetic dyes has been of interests in the environmental science especially in the environmental microbiology. Mushrooms are fungal groups that function as primary degraders of wood polyphenolic lignin. The ligninolytic enzymes produced by mushroom, including manganese peroxidase, lignin peroxidase, and laccase, mediate the oxidative degradation of lignin. The catalytic power of these enzymes in the degradation of aromatic ring compounds has been sought for the degradation of various organic compounds. In this project, we have screened 60 wild mushroom strains for their degradation activity against two representative PAHs, naphthalene and anthracene, and five aromatic dyes, including alizarin red S, crystal violet, malachite green, methylene blue, rose bengal. The degradation of PAHs was measured by GC while the decolorization of dyes was measured by both UV spectrophotometer and HPLC. As results, 9 wild mushroom strains showed high activity in degradation of PAHs and textile dyes. We also describe the secretive enzyme activities, the transcription levels, and cloning of target genes. In conjunction with this, activities of degradative enzymes, including laccase, lignin peroxidase, and Mn peroxidase, were measured in the liquid medium in the presence of PAHs and dyes. Our results showed that the laccase activity was directed correlated with the degradation, indicating that the main enzyme acts on PAHs and dyes is the laccase. The laccase activity was further simulated by the addition of $Cu^{2+}$ ion. Detailed studies of the enzyme system should be sought for future applications.

  • PDF