• Title/Summary/Keyword: fuel use

Search Result 1,731, Processing Time 0.037 seconds

The Effect of Air Pollutant to Fuel Cell Electric Vehicle (대기오염물질로 인한 연료전지자동차 출력 변화에 대한 연구)

  • Rhee, Jun-Ki;Park, Sang-Sun;Shul, Yong-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.154-157
    • /
    • 2009
  • Fuel cell is spotlighted as next energy source of future. The fuel of vehicle will be changed from fossil fuel such as gasoline, diesel to hydrogen. Polymer electrolyte membrane fuel cell(PEMFC) will be used to fuel cell vehicle because of its suitability. PEMFCs need oxygen for cathode. Because PEMFCs in vehicle use air for oxygen, air pollutant will be effect to performance of PEMFC. In this study, we examine a type of filter and pollutant gas how can be effect to performance of fuel cell electric vehicle.

  • PDF

DEVELOPMENT AND VALIDATION OF A NUCLEAR FUEL CYCLE ANALYSIS TOOL: A FUTURE CODE

  • Kim, S.K.;Ko, W.I.;Lee, Yoon Hee
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.665-674
    • /
    • 2013
  • This paper presents the development and validation methods of the FUTURE (FUel cycle analysis Tool for nUcleaR Energy) code, which was developed for a dynamic material flow evaluation and economic analysis of the nuclear fuel cycle. This code enables an evaluation of a nuclear material flow and its economy for diverse nuclear fuel cycles based on a predictable scenario. The most notable virtue of this FUTURE code, which was developed using C# and MICROSOFT SQL DBMS, is that a program user can design a nuclear fuel cycle process easily using a standard process on the canvas screen through a drag-and-drop method. From the user's point of view, this code is very easy to use thanks to its high flexibility. In addition, the new code also enables the maintenance of data integrity by constructing a database environment of the results of the nuclear fuel cycle analyses.

A Study of Vaporization Characteristics in the Methanol Spark Ignition Engine (메탄올 스파크 점화기관의 기화특성에 관한 연구)

  • 한성빈;문성수;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.77-84
    • /
    • 1994
  • The oil crises in 1973 and 1978 stimulated the alternative fuel research activities in many countries around the world. Among the alternative fuels, methanol is one of the highest potential fuels for transportation. Methanol has been considered for use as automotive fuel, but it has a defect of the great latent vaporization heat. Therefore, authors have made the fuel vaporizing device in order to eliminate the fuel film flow heating the mixture. This paper presents a study on the characteristics of vaporization, engine performance, and emission which result from using the fuel vaporizing device.

Fuel Cell Powered UAV with NaBH4 as a Hydrogen Source

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.579-582
    • /
    • 2008
  • PEM Fuel cell system was designed and constructed to use as a power source of unmanned aerial vehicles(UAV) in the present study. Sodium borohydride was selected as a hydrogen source and was decomposed by catalytic hydrolysis reaction. Fuel cell system consists of a fuel cell stack, a hydrogen generation system(HGS), and power management system(PMS). HGS was composed of a catalytic reactor, micropump, fuel cartridge, and separator. Hybrid power system between lithium-polymer battery and fuel cell was developed. The fuel cell system was integrated and packaged into a blended wing-body UAV. Energy density of the total system was 1,000 $W{\cdot}hr/kg$ and high endurance more than 5 hours was accomplished in the ground tests.

  • PDF

Protective Coatings for Accident Tolerant Fuel Claddings - A Review

  • Rofida Hamad Khlifa;Nicolay N. Nikitenkov
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.115-147
    • /
    • 2023
  • The Fukushima accident in 2011 revealed some major flaws in traditional nuclear fuel materials under accidental conditions. Thus, the focus of research has shifted toward "accident tolerant fuel" (ATF). The aim of this approach is to develop fuel material solutions that lead to improved reactor safety. The application of protective coatings on the surface of nuclear fuel cladding has been proposed as a near-term solution within the ATF framework. Many coating materials are being developed and evaluated. In this article, an overview of different zirconium-based alloys currently in use in the nuclear industry is provided, and their performances in normal and accidental conditions are discussed. Coating materials proposed by different institutions and organizations, their performances under different conditions simulating nuclear reactor environments are reviewed. The strengths and weaknesses of these coatings are highlighted, and the challenges addressed by different studies are summarized, providing a basis for future research. Finally, technologies and methods used to synthesize thin-film coatings are outlined.

Survey on the Utilization of Fire-Wood Boiler using Woody Biomass in Gangwon Province

  • Cha, Du-Song;Oh, Jae-Heun;Yi, Jae-Seon;Bae, Young-Soo
    • Journal of Forest and Environmental Science
    • /
    • v.23 no.2
    • /
    • pp.79-85
    • /
    • 2007
  • This survey was carried out to investigate the utilization situation of fire-wood boiler by the questionnaire and personal interview on rural and mountain households of Gangwon province from 1998 to 2005. The questionnaire include 7 questions on installation, 7 questions on fuel, 3 questions on use, and 3 questions on improvement. Each question was analyzed by percentage to investigate the use situation. This survey indicated that the general problems in use of fire-wood boiler are fuel purchase, collection and transportation, that the development of the household heating boiler using wood-based forming fuel which is cheap, small volume, easy handling, convenient purchase and high heat efficiency could be an alternative to improve the problems and that the continuous expansion of the supply of fire-wood boiler can prevent the devastation of forest through the regulation of imprudent fuel supply. Although the financial aid plan on the installation of fire-wood boiler is in active, many petty households in rural and mountain areas lose a chance to install the fire-wood boiler due to the unsatisfactory information. Thus, it will be desirable for municipal government to prepare the information plan to offer the equal chance and condition to all households in rural and mountain areas and to increase the financial aid for the continuous supply of fire-wood boiler.

  • PDF

Effect of Payload on Fuel Consumption and Emission of Light Duty Freight Truck during Acceleration Driving (소형 화물 차량의 적재량이 가속 주행 시의 연비 및 오염물질 배출에 미치는 영향)

  • Lee, Tae-Woo;Keel, Ji-Hoon;Jeon, Sang-Jin;Park, Jun-Hong;Lee, Jong-Tae;Hong, Ji-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.133-141
    • /
    • 2011
  • The effect of payload on fuel consumption and emission of light duty freight truck during acceleration driving has been analyzed. Running tests were carried out with various payload conditions on chassis dynamometer. A typical driving pattern for urban cities was used. Real time emission measurement systems for gaseous and soot emission were utilized to investigate the real time dynamic of fuel use and exhaust emissions. It was observed that fuel use and pollutant emissions were increased as payload was increased. Under the same payload condition, the increased amount of acceleration driving is much higher than that of steady state driving. The results demonstrated the advantages of eco-driving, which is an environmentally friendly driving manner, could be emphasized in heavier payload condition. Inertial tractive power was introduced for considering the parameters affecting emission during acceleration driving, which are speed, acceleration and payload. Fuel use and emission in various driving conditions were expressed as functions of inertial tractive power. The estimated result by these functions well predicted measured result within 10 % deviation.

THE STATUS AND PROSPECT OF DUPIC FUEL TECHNOLOGY

  • Yang Myung-Seung;Choi Hang-Bok;Jeong Chang-Joon;Song Kee-Chan;Lee Jung-Won;Park Geun-Il;Kim Ho-Dong;Ko Won-Il;Park Jang-Jin;Kim Ki-Ho;Lee Ho-Hee;Park Joo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.359-374
    • /
    • 2006
  • Since 1991, Korea, Canada and United States have performed the direct use of spent pressurized water reactor (PWR) fuel in the Canada deuterium uranium (CANDU) reactors (DUPIC) fuel development project. Unlike the Tandem fuel cycle, which requires a wet reprocessing, the DUPIC fuel technology can directly refabricate CANDU fuels from the PWR spent fuel and, therefore, is recognized as a highly proliferation-resistant fuel cycle technology, which can be adopted even in non-proliferation treaty countries. The Korea Atomic Energy Research Institute (KAERI) has fabricated DUPIC fuel elements in a laboratory-scale remote fuel fabrication facility. KAERI has demonstrated the fuel performance in the research reactor, and has confirmed the operational feasibility and safety of a CANDU reactor loaded with the DUPIC fuel using conventional design and analysis tools, which will be the foundation of the future practical and commercial uses of DUPIC fuel.

Neutronic analysis of fuel assembly design in Small-PWR using uranium mononitride fully ceramic micro-encapsulated fuel using SCALE and Serpent codes

  • Hakim, Arief Rahman;Harto, Andang Widi;Agung, Alexander
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • One of proposed Accident Tolerant Fuel (ATF) concept is fully ceramic micro-encapsulated fuel (FCMF). FCMF using uranium mononitride (UN) has better safety aspects than $UO_2$ pellet fuel although it might not have a better neutronic performance due to the presence of matrix and high neutron-induced interaction of $^{14}N$. Before implementing UN-FCMF technology in Small-PWR, further research must be taken place to make sure the proposed design of fuel assembly has inherent safety features and maintain the fuel performance. This study focusses on the neutronic analysis of UN-FCMF based fuel assembly using Serpent and SCALE codes. It is shown in the proposed fuel assembly design has inherent safety features with respect to the fuel temperature reactivity coefficient, void reactivity coefficient, and moderator temperature reactivity coefficient. It is noted that the use of FCMF leads to a lower ratio of burnup to $^{235}U$ enrichment ratio compared to the $UO_2/Zr$ fuel.

Experimental Study on Supersonic Combustion with Parallel Fuel Injection Method in the Cavity (공동 내부로의 평행분사방법을 이용한 초음속 연소의 실험적 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.2
    • /
    • pp.20-25
    • /
    • 2007
  • The supersonic combustion experiments are carried out using T3 free-piston shock tunnel. Hydrogen Fuel is injected in the cavity parallel with air(or nitrogen) flow. The equivalence ratios in this study are 0.132 and 0.447. Experimental measurements use OH-PLIF near the cavity and pressures in the combustor. For parallel fuel injection case, direct fuel add into cavity leads to increase of cavity pressure. And Flame exists just near the bottom wall for low equivalent ratio. There is no flame in the cavity because of no mixing in it. Compared to the inclined fuel injection, ignition delay length is longer for low equivalence ratio in both case. OH distribution is not a single line but a repeatable fluctuation flame structure by turbulence. Pressure distributions have nothing to do with the fuel injection position.

  • PDF