• Title/Summary/Keyword: fuel processing system

Search Result 141, Processing Time 0.029 seconds

Neutronic investigation of waste transmutation option without partitioning and transmutation in a fusion-fission hybrid system

  • Hong, Seong Hee;Kim, Myung Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1060-1067
    • /
    • 2018
  • A feasibility of reusing option of spent nuclear fuel in a fusion-fission hybrid system without partitioning was checked as an alternative option of pyro-processing with critical reactor system. Neutronic study was performed with MCNP 6.1 for this option, direct reuse of spent PWR fuel (DRUP). Various options with DRUP fuel were compared with the reference design concept; transmutation purpose blanket with (U-TRU)Zr fuel loading connected with pyro-processing. Performance parameters to be compared are transmutation performance of transuranic (TRU) nuclides, required fusion power and tritium breeding ratio (TBR). When blanket part is loaded only with DRUP, initial $k_{eff}$ level becomes too low to maintain a practical subcritical system, increasing the required fusion power. In this case, production rate of TRU nuclides exceeds the incineration rate. Design optimization is done for combining DRUP fuel with (U-TRU)Zr fuel. Reactivity swing is reduced to about 2447 pcm through fissile breeding compared to (U-TRU)Zr fuel option. Therefore, a required fusion power is reduced and tritium breeding performance is improved. However, transmutation performance with TRU nuclides especially $^{241}Am$ is degraded because of softening effect of spectrum. It is known that partitioning and transmutation should be accompanied with fusion-fission hybrid system for the effective transmutation of TRU.

A Study on the Efficiency Enhancement of the HT-PEMFC Having Fuel Processing System by Connecting Adsorption Chilling System (흡착식 냉방 시스템을 이용한 수소개질/연료전지 시스템의 효율향상)

  • NASEEM, MUJAHID;KIM, CHUL-MIN;LEE, SANGYONG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.5
    • /
    • pp.411-417
    • /
    • 2019
  • An adsorption chiller is connected to the fuel processing/fuel cell system to increase the energy efficiency of the system. Since, the minimum temperature of $70^{\circ}C$ is needed to operate the adsorption chiller, HT-PEMFC is used as a heating source and $80^{\circ}C$ hot water in the water tank at the system is supplied to the chiller. Experimentally measured COP of the adsorption chiller was between 0.4-0.5 and the total calcuated efficiency of the connected system was between 60% and 70% comparing to 47% without adsorption chilling system.

Development and Operation of 5kW-Class Polymer Electrolyte Membrane Fuel Cell System (5kW급 고분자 연료전지 시스템의 개발과 운전)

  • Chun, Y.G.;Peck, D.H.;Jeon, K.S.;Kim, C.S.;Shin, D.R.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1876-1878
    • /
    • 1999
  • Developed was a 5kW-class polymer electrolyte membrane fuel cell(PEMFC) system comprised of fuel cell stack, fuel processing, thermal and water management subsystems and ancillary equipments. Several large single cells have been fabricated with different gas flow field patterns and paths, and the gas flow field pattern for the stack has been determined based on the single cell performance of thin film membrane electrode assembly (MEA). The PEMFC stack was consisted of 100 cells with an electrode area of $300cm^2$, having serpentine flow pattern. Fuel processing was developed including an autothermal methanol reformer and two preferential CO oxidation reactors. The fuel processing was combined to PEMFC operation system consisted of air compressor and thermal and water management subsystems. The PEMFC stack showed performance of 5kW under the supply of $H_2$ and air, but its performance was lowered to 3.5kW under the supply of reformed gas.

  • PDF

Numerical Analysis of Integrated Fuel Processing System Considering Thermo-Chemical Energy Balance (열/화학적 에너지 평형을 고려한 통합 연료 개질 시스템의 수치적 연구)

  • Noh, Junghun;Jung, Hye-Mi;Jung, Un-Ho;Yoon, Wang-Lai;Um, Sukkee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.111.1-111.1
    • /
    • 2010
  • This paper focuses on a systematic configuration of steam reforming fuel processor, particularly designed for small and medium sized hydrogen production application. In a typical integration of the fuel processor, there exist significant temperature gradients over the entire system which has negative effect on both catalyst life-time and system performance. Also, the volumetric inefficiency should be avoided to obtain the possible compactness for the commercial purpose. In the present work, the computational analysis will be performed to gain the fundamental insight on the transport phenomena and chemical reactions in the reformer consisting of preheating, steam reforming (SR), and water gas shift (WGS) reaction beds in the flow direction. Also, the fuel processing system includes a top-fired burner providing necessary thermal energy for endothermic catalytic reactor. A fully two-dimensional numerical modeling for a integrated fuel processing system is introduced for in-depth analysis of the heat and mass transport phenomena based on surface kinetics and catalytic process. In the model, water gas shift reaction and decomposition reaction were assumed to be at equilibrium. A kinetic model was developed and then computational results were compared with the experimental data available in the literature. Finally, the case study was done by considering the key parameters, i.e. steam to carbon (S/C) ratio and temperature. The computer-aided models developed in this study can be greatly utilized for the design of advanced fast-paced compact fuel processors research.

  • PDF

A Study on the Micro-Focus X-Ray Inspection for Confirming the Soundness of End Closure Weld of DUPIC Fuel Elements (DUPIC 핵연료봉 봉단 용접부 건전성 확인을 위한 미세초점 X-선 투과시험에 관한 연구)

  • 김웅기;김수성;이정원;양명승
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.88-94
    • /
    • 2001
  • DUPIC (Direct use of spent PWR fuel in CANDU reactors) nuclear fuel is a CANDU fuel fabricated remotely from spent PWR fuel materials in a hot cell. The soundness of the end closure welds of nuclear fuel elements is an important factor for the safety and performance of nuclear fuel. To evaluate the soundness of the end closure welds of DUPIC fuel element, a precise X-ray inspection system is developed using a micro-focus X-ray generator with an image intensifier and a real time camera system. The fuel elements made of Zircaloy-4 and stainless steel by an Nd:YAG laser welding and a TIG welding aye inspected by the developed inspection system. The soundness of the welds of the fuel elements was confirmed by the X-ray inspection process, and the irradiation test of DUPIC fuel elements has been successfully completed at the HANARO research reactor.

  • PDF

Performance of Ru-based Preferential Oxidation Catalyst and Natural Gas Fuel Processing System for 1 kW Class PEMFCs System (Ru계 촉매의 CO 선택적 산화 반응 및 1 kW급 천연가스 연료처리 시스템의 성능 연구)

  • Seo, Yu-Taek;Seo, Dong-Joo;Seo, Young-Seog;Roh, Hyun-Seog;Jeong, Jin-Hyeok;Yoon, Wang-Lai
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.3
    • /
    • pp.293-300
    • /
    • 2006
  • KIER has been developing a Ru-based preferential oxidation catalysts and a novel fuel processing system to provide hydrogen rich gas to residential PEMFCs system. The catalytic activity of Ru-based catalysts was investigated at different Ru loading amount and different support structure. The obtained result indicated that 2 wt% loaded Ru-based catalyst supported on ${\alpha}-Al_2O_3$ showed high activity in low temperature range and suppressed the methanation reaction. The developed prototype fuel processor showed thermal efficiency of 78% as a HHV basis with methane conversion of 92%. CO concentration below 10 ppm in the produced gas is achieved with separate preferential oxidation unit under the condition of $[O_2]/[CO]=2.0$. The partial load operation have been carried out to test the performance of fuel processor from 40% to 80% load, showing stable methane conversion and CO concentration below 10 ppm. The durability test for the daily start-stop and 8 h operation procedure is under investigation and shows no deterioration of its performance after 50 start-stop cycles. In addition to the system design and development.

Dimensional Measurement of Spent Fuel Assemblies Using Image Processing Technique (영상처리기술에 의한 사용후핵연료 집합체의 제원 측정)

  • Koo, Dae-Seo;Park, Seong-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.9-13
    • /
    • 2002
  • A pool image processing measurement method has been developed to improve the examination efficiency and to minimize the errors of dimensional measurements of spent fuel assemblies in pool. Diameter and length measurements of mock-up fuel rods using the image processing system are $-0.24{\pm}0.03mm,\;0.34{\pm}0.06mm$ on the basis of the true value and their maximum errors are within -0.3 and 0.4mm, respectively, According to the result of dimensional measurement of spent fuels in pool, the upper and lower part diameter and mid part diameter of fuel rods of the J44 fuel assembly irradiated for 2 cycles in the Kori-2 nuclear reactor were decreased by about 2.0 and 3.0% in comparison with design values, respectively. The length of fuel rods was elongated by about 0.4%. The change behavior of diameter and length. of fuel rods of the F02 fuel assembly irradiated for 3 cycles in the Kori-1 nuclear reactor showed a trend similar to the results of J44.

MEASUREMENT OF NUCLEAR FUEL ROD DEFORMATION USING AN IMAGE PROCESSING TECHNIQUE

  • Cho, Jai-Wan;Choi, Young-Soo;Jeong, Kyung-Min;Shin, Jung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.133-140
    • /
    • 2011
  • In this paper, a deformation measurement technology for nuclear fuel rods is proposed. The deformation measurement system includes a high-definition CMOS image sensor, a lens, a semiconductor laser line beam marker, and optical and mechanical accessories. The basic idea of the proposed deformation measurement system is to illuminate the outer surface of a fuel rod with a collimated laser line beam at an angle of 45 degrees or higher. For this method, it is assumed that a nuclear fuel rod and the optical axis of the image sensor for observing the rod are vertically composed. The relative motion of the fuel rod in the horizontal direction causes the illuminated laser line beam to move vertically along the surface of the fuel rod. The resulting change of the laser line beam position on the surface of the fuel rod is imaged as a parabolic beam in the high-definition CMOS image sensor. An ellipse model is then extracted from the parabolic beam pattern. The center coordinates of the ellipse model are taken as the feature of the deformed fuel rod. The vertical offset of the feature point of the nuclear fuel rod is derived based on the displacement of the offset in the horizontal direction. Based on the experimental results for a nuclear fuel rod sample with a formation of surface crud, an inspection resolution of 50 ${\mu}m$ is achieved using the proposed method. In terms of the degree of precision, this inspection resolution is an improvement of more than 300% from a 150 ${\mu}m$ resolution, which is the conventional measurement criteria required for the deformation of neutron irradiated fuel rods.

3D Modeling and Simulation using Virtual Manipulator (가상 조작기를 이용한 3D 모델링 및 시뮬레이션)

  • Park, Hee-Seong;Kim, Ho-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.547-550
    • /
    • 2011
  • The purpose of this paper is to verify and validate the maintenance tasks of the construction of a nuclear facility using a digital mock-up and simulation technology instead of a physical mock-up. Prior to the construction of a nuclear facility, a remote simulator that provides the opportunity to produce a complete digital mock-up of the PRIDE (Pyroprocess Integrated Inactive DEmonstration Facility) region and its remote handling equipment, including operations and maintenance procedures has been developed. In this paper, the system architecture and graphic user interface of a remote simulator that coincides with the extraordinary nature of a nuclear fuel cycle facility is introduced. In order to analyze the remote accessibility of a remote manipulator, virtual prototyping that was performed it by using haptic device of external input devices under a 3D full-scale digital mock-up is explained.

The Effect of the Air Temperature and Air-assisted Pressure on the Fuel Droplet Atomization (분무 공간의 공기온도와 보조공기의 공급압력이 연료입자의 미립화에 미치는 영향)

  • Kim, Y.S.;Lee, J.S.;Yoon, S.H.;Chung, S.S.;Ha, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.16-24
    • /
    • 1998
  • The fuel injection type, in the gasoline engines of atomization of fuel droplet and its distribution hae influenced directly on the decision of engine performance and harmful emission. In this paper, atomization characteristics of fuel spray is investigated with microscopic visualization system. Particle motion analysis system is used to measure the SMD from fuel spray of air-assisted injector by initial factors such as temperature of ambient air and air-assisted pressure. As air-assist pressure and ambientair temperature increase, the SMD is decreased, and its variation is more stable.

  • PDF