• 제목/요약/키워드: fuel permeability

검색결과 163건 처리시간 0.027초

저온 PEMFC용 금속분리판 코팅의 내구 특성 연구 (Coating Durability of Metal Bipolar plate for Low Temperature PEMFC)

  • 강성진;전유택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.82.2-82.2
    • /
    • 2010
  • The development of bipolar plate having high efficiency and chemical properties has a major impact on fuel cell applications commercialization. Even though graphite bipolar plate has high electric conductivity and chemical resistance, it has demerits about mass production and brittle property for commercialization. Hence, metallic bipolar plate can be substitute for fuel cell bipolar plate. Although its inadequate corrosion behavior under PEMFC environment lead to a deterioration of membrane by dissolved metal ions, metallic bipolar plate for PEMFC is more suitable for automotive and residential power generation system because of its high mechanical strength, low gas permeability and applicability to mass production. Therefore, several types of coating has been applied to prevent corrosion and oxide film growth and to achieve more high durability. This work presents durability of coated metal bipolar plate for low temperature PEMFC which made for fuel cell vehicle. This results showed surface treatment increase long-term durability, even electric conductivity and corrosion resistance.

  • PDF

Nafion Composite Membranes Containing Rod-Shaped Polyrotaxanes for Direct Methanol Fuel Cells

  • Cho Hyun-Dong;Won Jong-Ok;Ha Heung-Yong;Kang Yong-Soo
    • Macromolecular Research
    • /
    • 제14권2호
    • /
    • pp.214-219
    • /
    • 2006
  • Cast Nafion-based composite membranes containing different amounts of organic, nanorod-shaped polyrotaxane were prepared and characterized, with the aim of improving the properties of polymer electrolyte membranes for direct methanol fuel cell applications. Polyrotaxane was prepared using the inclusion-complex reaction between ${\alpha}$-cyclodextrin and poly(ethylene glycol) (PEG) of different molecular weights. The addition of polyrotaxane to Nafion changed the morphology and reduced the crystallinity. The conductivity of the composite membranes increased with increasing polyrotaxane content up to 5 wt%, but then decreased at higher polyrotaxane contents. Well-dispersed, organic polyrotaxane inside the membrane can provide a tortuous path for the transport of methanol, as the methanol permeability depends on the aspect ratio of polyrotaxane, which is controlled by the molecular weight of PEG. All of the Nafion-based, polyrotaxane composite membranes showed a higher selectivity parameter than the commercial Nafion films did.

직접메탄올연료전지 시스템에서의 수소이온고분자전해질막의 역할 및 현황 (Current Status and Roles of Proton Exchange Membrane in Direct Methanol Fuel Cell Systems)

  • 김혜경
    • 전기화학회지
    • /
    • 제12권3호
    • /
    • pp.219-233
    • /
    • 2009
  • Mobile devices in the next generation such as camera, cell phone, network, Note PC, etc. require higher power and energy sources due to convergences of various functions. Direct methanol fuel cell (DMFC) has been focused as an attractive power source, but there are critical issues involved in its commercialization with regard to the core technologies of materials, components, and system. The requirements of key technologies are differentiated from applications and fuel supply methods. Here, the roles of the proton-conducting membrane are discussed and the current status of DMFC systems is discussed in terms of proton conductivity, methanol permeability, and water management. Materials such as perfluorinated and partially fluorinated membranes, hydrocarbon membranes, composite membranes, and other modified ionomers have been studied. These would explain the critical issues of DMFC and the role of membranes for commercialization.

Polymer Electrolyte Membranes and their Applications to Membranes, Fuel Cells and Solar Cells

  • Kang, Yong-Soo
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 The 4th Korea-Italy Workshop
    • /
    • pp.29-32
    • /
    • 2003
  • Polymer electrolyte membranes are developed for the applications to facilitated transport membranes, fuel cells and solar cells. The polymer electrolyte membranes containing silver salt show the remarkably high separation performance for olefin/paraffin mixture in the solid state; the propylene permeance is 45 GPU and the ideal selectivity of propylene/propane is 15,000. For fuel cell membranes, the effects of the presence and size of the proton transport channels on the proton conductivity and methanol permeability were investigated. The cell performance for dye-sensitized solar cells employing polymer electrolytes are measured under light illumination. The overall energy conversion efficiency reaches 5.44 % at 10 ㎽/$\textrm{cm}^2$, to our knowledge the highest value ever reported in the polymer electrolytes.

  • PDF

고분자전해질형 연료전지 가스확산층의 탄소 부식에 관한 실험적 분석 (Experimental Study on Carbon Corrosion of Gas Diffusion Layer in PEM Fuel Cell)

  • 하태훈;조준현;박재만;민경덕;이은숙;정지영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.76.1-76.1
    • /
    • 2010
  • Recently, many efforts to solve the durability problem of PEM fuel cell are carried on constantly. However, despite this attention, durability researches of gas diffusion layer (GDL) are not much reported yet. Generally, GDL of PEM fuel cell experiences three external attacks, which are dissolution of water, erosion of gas flow, corrosion of electric potential. In this study, among these degradation factors, carbon corrosion of electric potential was focused and investigated with accelerated carbon corrosion test. Through the test, it is confirmed that carbon corrosion occurred at GDL, and corroded GDL decreased a performance of operating fuel cell. The property changes of GDL were measured with various methods such as air permeability meter, pore distribution analyzer, thermo gravimetric analyzer, and tensile stress test to discover the effects of carbon corrosion. Carbon corrosion caused not only loss of weight and thickness, but also degradation of mechanical strength of GDL. In addition, to analysis the reason of GDL property changes, a surface and a cross section of GDL were observed with scanning electron microscope. After 100 hours test, the GDL showed serious damage in center of layer.

  • PDF

연료극 지지체식 원통형 고체산화물 연료전지의 제조 및 특성 (Fabrication and Characteristics of Anode-supported Tubular Solid Oxide Fuel Cell)

  • 송근숙;송락현;임영언
    • 한국재료학회지
    • /
    • 제12권9호
    • /
    • pp.691-695
    • /
    • 2002
  • A low temperature anode-supported tubular solid oxide fuel cell was developed. The anode-supported tube was fabricated using extrusion process. Then the electrolyte layer and the cathode layer were coated onto the anode tube by slurry dipping process, subsequently. The anode tube and electrolyte were co-fired at $140^{\circ}C$, and the cathode was sintered at $1200^{\circ}C$. The thickness and gas permeability of the electrolyte depended on the number of coating and the slurry concentration. Anode-supported tube was satisfied with SOFC requirements, related to electrical conductivity, pore structure, and gas diffusion limitations. At operating temperature of $800^{\circ}C$, open circuit voltage of the cell with gastight and dense electrolyte layer was 1.1 V and the cell showed a good performance of 450 mW/$\textrm{cm}^2$.

AMESet 기반 20 kW급 수소 연료전지 시스템 동특성 모델 해석 (Analysis of Dynamic Characteristics of 20 kW Hydrogen Fuel Cell System Based on AMESet)

  • 우종빈;김영현;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.465-477
    • /
    • 2023
  • In proton exchange membrane fuel cell (PEMFC), proper thermal management of the stack and moisture generation by electrochemical reactions significantly affect fuel cell performance. In this study, the PEMFC dynamic characteristic model was developed through Simcenter AMESim, a development program. In addition, the developed model aims to understand the thermal resin balance of the stack and performance characteristics for input loads. The developed model applies the thermal management model of the stack and the moisture content and permeability model to simulate voltage loss and stack thermal behavior precisely. This study extended the C based AMESet (adaptive modeling environment submodeling tool) to simulate electrochemical reactions inside the stack. Fuel cell model of AMESet was liberalized with AMESim and then integrated with the balance of plant (BOP) model and analyzed. And It is intended to be used in component design through BOP analysis. The resistance loss of the stack and thermal behavior characteristics were predicted, and the impact of stack performance and efficiency was evaluated.

설폰화 폴리설폰을 이용한 직접메탄올연료전지용 이온교환막의 제조 및 특성 연구 (Preparation and Characterization of ion Exchange Membrane for Direct Methanol Fuel Cell(DMFC) Using Sulfonated Polysulfone)

  • 신현수;이충섭;전지현;정선영;임지원;남상용
    • 멤브레인
    • /
    • 제12권4호
    • /
    • pp.247-254
    • /
    • 2002
  • 직접메탄올연료전지에 사용가능한 이온교환막을 개발하기 위하여 본 연구에서는 폴리설폰을 설폰화시켜 양이온교환막을 제조하였고 그에 대한 특성을 $150^{\circ}C$에서 열처리 전과 후를 통해 메탄을 투과도, 이온전도도, 이온교환용량 그리고 함수율 등에 대하여 평가하였다. 폴리설폰 고분자의 단량체와 설폰화제의 몰비가 1.4일 때 메탄올 투과도는 $2.87{\times}10^{-7} \;cm^2/s$(열처리 안함), $1.52{\times}10^{-7}\; cm^2/s$(열처리함)과 이온전도도는 1.10{\times}10^{-2}\; S/cm$ (열처리안함), 0.87{\times}10^{-2}\; S/cm$(열처리함)을 각각 보여 주었다. 그 이후의 몰비에서는 거의 증가하지 않았으며, 이러한 경향은 함수율과 이온교환용량에서도 같은 경향을 보여주었다.

실리카 화합물을 함유한 PVA/PSSA-MA 전해질 막의 제조 및 특성과 연료전지로의 응용 (Preparation and Characterization of PVA/PSSA-MA Electrolyte Membranes Containing Silica Compounds for Fuel Cell Application)

  • 변홍식;김대훈;이병성;이보성;윤석원;임지원
    • 멤브레인
    • /
    • 제18권4호
    • /
    • pp.336-344
    • /
    • 2008
  • 본 연구에서는 Poly(vinyl alcohol) (PVA)을 주쇄부(base polymer)로 하여 화학적 가교를 실시하기 위하여 Poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)를 첨가하고, 실리카와 술폰산기를 함유한 3-(trihydroxysilyl)-1-propanesulfonic acid (THS-PSA)의 함량변화와 열 가교온도 변화를 통하여 직접 메탄을 연료전지(DMFC)에 적용하기 위한 고분자 전해질 막 소재에 관한 연구를 실시하였다. 제조된 막을 Nafion 115와 함께 비교하기 위하여 동일한 조건에서 함수율, 열 중량 분석(TGA), 이온교환용량, 이온전도도 및 메탄올 투과도를 실시하였다. 실험을 통하여 THS-PSA의 함량과 열 가교 온도변화에 따라서 메탄올 투과도가 $10^{-6}$에서 $10^{-8}\;cm^2/s$로 감소된 결과를 얻었으며, 이온전도도는 $10^{-3}$에서 $10^{-2}\;S{\cdot}cm^{-1}$으로 향상되어 Nafion 115보다 우수한 결과를 나타내었다.

PEMFC 고분자막의 어닐링 온도가 내구성에 미치는 영향 (Effect of Annealing Temperature on the Durability of PEMFC Polymer Membrane)

  • 이미화;오소형;박유준;유동근;박권필
    • Korean Chemical Engineering Research
    • /
    • 제60권1호
    • /
    • pp.7-11
    • /
    • 2022
  • 고분자전해질 연료전지의(PEMFC)의 제막 과정에서 성능 및 내구성을 위해 건조와 어닐링의 열처리 과정이 필요하다. 본 연구에서는 고분자막 내구성 향상을 위한 최적의 어닐링 온도에 대해 연구하였다. 125~175 ℃ 온도 범위에서 어닐링하였고, 각 어닐링 온도에서 내구성의 기초 자료로 열 안정성 및 수소투과도를 측정하였다. 펜톤 반응과 OCV holding에 의해 전기화학적 내구성을 분석했다. 165 ℃ 어닐링 온도가 열 안정성과 수소투과도 면에서 최적의 온도였다. 펜톤 반응에서 165 ℃에서 어닐링한 막의 불소유출속도가 제일 낮고, OCV holding 실험에서도 165 ℃에서 어닐링한 막의 수명이 제일 길어, 165 ℃가 고분자막의 내구성을 위한 최적의 온도임을 확인했다.