• Title/Summary/Keyword: fuel oil C

Search Result 289, Processing Time 0.157 seconds

Experimental Study on the Viscosity Characteristics of Diluted Engine Oils with Diesel Fuel (경유혼입 디젤엔진오일의 점도특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Kim, Han-Goo
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • An experimental study was conducted to evaluate the viscosity characteristics of multi-grade engine oils in which contain diesel fuels. Unused engine oils of SAE 5W40, 10W40 and 15W40 were blended with a diesel fuel ratio of 5%, 10%, and 15%. The viscosity of a diluted engine oil was measured with temperature variation ranging from $-20^{\circ}C$ to $120^{\circ}C$ using a rotary viscometer. The diluted engine oil in which is blended to a diesel fuel plays an important role for decreasing an engine oil viscosity, which may decrease the oil film thickness and a load-carrying capacity. Test results show that the viscosity tends to fall for the increased temperature when engine oil is mixed with a diesel fuel. Especially, the viscosity at a low temperature zone is radically decreased compared with a high temperature zone. Based on the experimental results, the empirical equation that can predict the viscosity of diluted engine oil is expressed in the exponential function with the variation of the temperature and a fuel ratio of diluted engine oil. This equation may be possible to predict the limitation of the oil-fuel dilution rate at the concept design stage of the CDPF system, which doesn't affect the influence of the tribological components.

An Experimental Study on the Combustion Characteristics of Wastewater-Emulsion Fuel (Emulsion(B.C유+폐수)연료의 연소효율에 관한 실험적 연구)

  • 정진도
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.267-273
    • /
    • 2003
  • Emulsion fuel is a very attractive fuel because of its energy saving and pollution prevention properties. We investigated and compared the combustion efficiency of B-C oil and emulsion fuel i.e. fuel made from the mixture of B-C oil and waste water. By installing an R-type thermocouple and an optical pyrometer on each side of the boiler, and by placing a combustion analyzer at the point of gas emissions, We were able to measure and compare each flame temperature, combustion rate and the concentration of emitted gas when B-C oil and emulsion fuel are burned. The following results were obtained: The flame temperature of emulsion fuel at the front and rear of the boiler is about 50$^{\circ}C$ lower than the flame temperature of B-C oil. The reason for this difference in temperature is that both latent and sensible heat is lost due to the moisture in the waste water of emulsion fuel. An analysis of emitted gases shows that when emulsion fuel is used polluting substances decrease also the concentration of CO becomes considerably lower. The combustion efficiency for B-C oil and emulsion fuel is 85.5% and 84.8% respectively.

Emission Evaluation of Emulsion Fuel Prepared from Bunker C Oil (벙커 C유를 사용한 에멀젼 연료유의 배기가스 특성)

  • Lim, HeungKyoon;Lee, MyungJin;Chi, Gyeong-Yup;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.186-192
    • /
    • 2017
  • In this study, water in oil (W/O) emulsion fuel was prepared with surfactant mixture of OIMS90 and NP12 by varying ratio of water to bunker-C oil, surfactant concentration and composition, emulsification time, stirring intensity, temperature and mixing time. Diesel engine performance and exhaust emissions were measured and analyzed with prepared emulsified fuel and compared with those measured using bunker Coil. The results indicated that bunker C emulsion fuel stabilized by surfactant mixture of OIMS90 and NP12 is efficient in reducing emissions of particulate matter, $NO_2$, CO, $CO_2$ and $SO_2$. The biggest reduction in exhaust emission was achieved by using emulsion fuel prepared by OIMS90/NP12 = 4 : 6, 500 ppm of total surfactant concentration and 10% water content at $80^{\circ}C$. Boiler efficiency test measured with emulsion fuel showed excellent energy efficiency compared with bunker C oil.

COMBUSTION CHARACTERISTICS OF ESTERIFIED RICE BRAN OIL AS AN ALTERNATIVE FUEL IN A DIESEL ENGINE

  • Choi, S.H.;Oh, Y.T.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.399-406
    • /
    • 2006
  • The smoke emission of diesel engines is being recognized as one of the major source of the air pollution problems. This study investigates the potential of esterified rice bran oil to reduce smoke emission as an alternative fuel for diesel engines. Because the esterified rice bran oil has approximately a 10.5% oxygen content, the combustion of the diesel engine improved and exhaust smoke decreased. Gas chromatography was used to analyze not only the total amount of hydrocarbon but also the amount of hydrocarbon components from $C_1$ to $C_6$ in the exhaust gas to determine an exact source responsible for the remarkable reduction in the smoke emission. The number of individual hydrocarbon($C_1{\sim}C_6$) as well as the total amount of hydrocarbon of esterified rice bran oil reduced significantly compared to that of hydrocarbon of diesel fuel.

Performance of a Screw Press to Extract Soybean Oil and Quality of the Oil as a Fuel (스크류 프레스의 대두유(大豆油) 착유(搾油) 성능(性能)과 착유유(搾油油)의 연료(燃料) 성질(性質))

  • Suh, S.R.;Harris, F.D.
    • Journal of Biosystems Engineering
    • /
    • v.10 no.2
    • /
    • pp.47-54
    • /
    • 1985
  • Performance of a screw press was investigated experimentally with soybeans of various temperatures in order to find out a proper temperature of soybean to extract the oil by the mechanical method. Crude oil extracted by the screw press was chemically analyzed to determine a level of processing the oil for the oil to be used as a fuel for a compression ignition engine. The crude oil was degummed and dried by a plant type laboratory experimental setup to decide whether the processes are effective to improve quality of the oil as a fuel. The degummed oil and the degummed and dried oil were also chemically analyzed and were compared with the crude oil and the commercially degummed and dried soybean oil. The results are as follows: 1. In extraction of soybean oil by a screw press, heating soybeans is effective to increase oil production and to decrease energy consumption of the press. A proper temperature of soybean to extract the oil by the press was determined as about $50^{\circ}C$. 2. Soybean oil production and electric energy consumption of the press are about 83 ml and 58 Wh per 1 kg of soybeans heated to about $50^{\circ}C$, respectively. 3. The quality of crude oil produced by the press is similar to that of the commercially degummed and dried oil. The crude oil does not need to be degummed or dried for use as an engine fuel.

  • PDF

On the viscosity of Bunker C fuel oil (방카 C 중유의 점도에 관한 실험)

  • 나윤호
    • Journal of the Korean Professional Engineers Association
    • /
    • v.4 no.15
    • /
    • pp.11-15
    • /
    • 1971
  • Bunker C fuel oil may be taken as a conc. solution of asphalt as a solute. It may be assumpt that there will be unalogical relationship between cone. solution and solute in regological behavior. Investigation was carried out to fiud out the -opitimum preheating temperature. The following results were obtained: the colloidal structure bunker C fuel oil undergoes a transition at around the softening point of the solute asphalt: and the flow charactor changes from non-Newtonian flow to Newtonian as well as its activation energy is memarkably reduced at around softening point of the solute asphalt for the purpose of the improvement of flow charater of Bunker C fuel oil, the preheating must be done above the softening point of a solute asphalt.

  • PDF

Starting of Farming Diesel Engines According to Characteristics of Light Oil at Low Temperature (경유의 저온특성에 따른 농용 디젤엔진의 저온시동성)

  • 신승엽;김학주;이용복;김병갑;윤진하;김기택;양대준
    • Journal of Biosystems Engineering
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 2003
  • This study was carried cut to get basic data of troubles in starting and supply of farm diesel engines in cold winter. The results of the study are summarized as follows: 1. As the result of farm survey. the proportions of farms which had starting problems or troubles in fuel supply in cold winter for the last 5 years were 38% for the farms with power-tillers and 32% for the farms with tractors. Most of the farms which had starting problems or troubles in fuel supply in cold winter used light oil for summer. spring or fall rather than for winter. 2. As the result of fuel supply test, fuel supply was stopped at -6$^{\circ}C$ and -18$^{\circ}C$ for summer light oil and winter light oil. respectively 3. The lowest temperatures of winter light oil for starting engine were -7.5$^{\circ}C$ for power-tiller. -12.5$^{\circ}C$ for tractor of 38ps, and -17.5$^{\circ}C$ for tractor of 45ps. which were 5~7.5$^{\circ}C$ lower than that of summer light oil. 4. The performance of engine starting and the trouble of fuel supply system at lower temperature were significantly improved by using winter hight oil rather than summer light oil.

Study on the Lubricity Characteristics of Bio-heavy Oil for Power Generation by Various feedstocks (다양한 원료에 따른 발전용 바이오중유의 윤활 특성 연구)

  • Kim, Jae-Kon;Jang, Eun-Jung;Jeon, Cheol-Hwan;Hwang, In-Ha;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.985-994
    • /
    • 2018
  • Bio-heavy oil for power generation is a product made by mixing animal fat, vegetable oil and fatty acid methyl ester or its residues and is being used as steam heavy fuel(B-C) for power generation in Korea. However, if the fuel supply system of the fuel pump, the flow pump, the injector, etc., which is transferred to the boiler of the generator due to the composition of the raw material of the bio-heavy oi, causes abrasive wear, it can cause serious damage. Therefore, this study evaluates the fuel characteristics and lubricity properties of various raw materials of bio-heavy oil for power generation, and suggests fuel composition of biofuel for power generation to reduce frictional wear of generator. The average value of lubricity (HFRR abrasion) for bio-heavy oil feedstocks for power generation is $137{\mu}m$, and it varies from $60{\mu}m$ to $214{\mu}m$ depending on the raw materials. The order of lubricity is Oleo pitch> BD pitch> CNSL> Animal fat> RBDPO> PAO> Dark oil> Food waste oil. The average lubricity for the five bio-heavy oil samples is $151{\mu}m$ and the distribution is $101{\mu}m$ to $185{\mu}m$. The order of lubricity is Fuel 1> Fuel 3> Fuel 4> Fuel 2> Fuel 5. Bio-heavy oil samples (average $151{\mu}m$) show lower lubricity than heavy oil C ($128{\mu}m$). It is believed that bio-heavy oil for power generation is composed of fatty acid material, which is lower in paraffin and aromatics content than heavy oil(B-C) and has a low viscosity and high acid value, resulting in inhibition of the formation of lubricating film by acidic component. Therefore, in order to reduce friction and abrasion, it is expected to increase the lubrication of fuel when it contains more than 60% Oleo pitch and BD pitch as raw materials of bio-heavy oil for power generation.

Penetration Behavior of Spilled Fuel Oil C into Coastal Sandy Beach (해양에서 유출된 C중유의 토양 침투 거동)

  • Cheong Cheong-Jo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.3
    • /
    • pp.37-44
    • /
    • 2003
  • To know the penetration behavior of spilled oil into sandy beach sediment is very important, because the penetration depth of the stranded oil into the sediments is one of the most significant information to know effect of spilled oil on biological communities and to set up cleaning method. The purpose of this study is to clarify the effects of wave and/or tidal action on penetration of spilled oil into the sediments and to clarify main factor in oil penetration using sandy beach model. Specific conclusions derived from this study are as follows. Spilled fuel oil C penetrated into the sediments only by falling tidal fluctuation and not by wave action on sandy beach environment, and the first tide is most important for the penetration of stranded oil. Over 80% of bulk fraction in penetrated fuel oil C was concentrated to the top 2 cm sediment-layer. Moreover, the penetration of stranded oil into the sandy beach sediments was strongly correlated with the oil viscosity affected by temperature.

  • PDF

Combustion and Emission Characteristics of Diesel Engine by Mixing DME and Bunker Oil

  • Ryu, Younghyun;Dan, Tomohisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.885-893
    • /
    • 2012
  • DME (Dimethyl ether) is regarded as one of the candidates of alternative fuels for diesel engine, because of its higher cetane number suitable for a compression ignition engine. Also, DME is a simple chemical structure, colorless gas that is easily liquefied and transported. On the other hand, Bunker oil (JIS C heavy oil) has long been used as a basic fuel in marine diesel engines and is the lowest grade fuel oil. In this study, the combustion and emission characteristics were measured experimentally in the direct injection type diesel engine operated with DME and Bunker oil mixed fuel. From our experimental results, it is induced that DME and Bunker oil blended fuel would be an effective fuel which can reduces the concentration of harmful matter in exhaust gases.