• Title/Summary/Keyword: fuel leakage

Search Result 221, Processing Time 0.026 seconds

Study on the Consequence Analysis about Leakage Scenarios for Hydrogen Gas (수소가스 누출 시나리오에 따른 피해예측에 관한 연구)

  • Kim, Tae Hun;Oh, Young Dal;Lee, Man Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.159-165
    • /
    • 2014
  • For the hydrogen economy system being tried starting with the 21st century, the fields that was not dealt with so far, such as the safety measure for large leakage accidents, the safety problem at infrastructures like a hydrogen station, the safety problem in terms of automobiles depending on introduction of hydrogen cars, the safety problem in a supply for homes like fuel cells, etc., are being deeply reviewed. In order to establish a safety control system, an essential prerequisite in using and commercializing hydrogen gas as an efficient energy source, it is necessary to conduct an analysis, such as analysis of hydrogen accident examples, clarification of physical mechanisms, qualitative and quantitative evaluation of safety, development of accident interception technologies, etc. This study prepared scenarios of hydrogen gas leakage that can happen at hydrogen stations, and predicted damage when hydrogen leaks by using PHAST for this.

Investigation on helix type labyrinth seal to minimize leakage flow of cryogen for rotating superconducting machines

  • Yubin Kim;Kihwan Kim;Seungcheol Ryu;Hojun Cha;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.25-30
    • /
    • 2024
  • High-temperature superconducting rotors offer advantages in terms of output-to-weight ratio and efficiency compared to conventional phase conduction motors or generators. The rotor can be cooled by conduction cooling, which attaches a cryocooler, and by refrigerant circulation, which uses circulating liquid or gas neon, helium and hydrogen. Recent work has focused on environmental issues and on high-temperature superconducting motors cooled with liquid hydrogen that can be combined with fuel cells. However, to ensure smooth supply and return of the cryogenic cooling fluid, a cryogenic rotational coupling between the rotating and stationary parts is necessary. Additionally, the development of a sealing structure to minimize fluid leakage applicable to the coupling is essential. This study describes the design and performance evaluation of a non-contact sealing method, specifically a labyrinth seal, which avoids power loss and heat load caused by friction in contact sealing structures. The seal design incorporates a spiral flow path to reduce leakage using centrifugal force, and computational fluid dynamics (CFD) simulations were conducted to analyze the flow path and rotational speed. A performance evaluation device was configured and employed to evaluate the designed seal. The results of this study will be used to develop a cryogenic rotational coupling with supply and return flow paths for cryogenic applications.

Development of Multi Channel Gas Leakage Detector for Large Facility (대규모 시설을 위한 다채널 가스 누설 경보기 개발)

  • Jeong, Kyu-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.1-7
    • /
    • 2008
  • As a clean fuel, LNG or LPG is widely used in large restaurants or plants instead of coal. These fuels are easy to use and cheap. However, they are inflammable very much and easily exploded at the worst. So there are many laws and regulations legislated for the handling and usage of the gas facilities. Nevertheless, very harsh explosions occurred in several domestic or foreign places. In this paper a gas detection and alarm system was developed for large facilities. A new concept for connecting many gas detectors was proposed and based upon that a system including hardware and software have been developed and tested. Although up to 16 gas detectors apart 1 km from main controller can be connected currently, this system can be easily expanded for more detectors because each gas detector receiver communicates with main controller using industrial standard RS-485 multi drop technique. Furthermore several additive functions was included for the installation and maintenance convenience.

Current Development Status of Inter-Propellant Seal for a Turbopump (터보펌프용 Inter-Propellant Seal의 개발 현황)

  • Kwak Hyun D.;Jeon Seong-Min;Kim Jinhan
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.195-200
    • /
    • 2004
  • To avoid an unexpected explosion occurring from a mixture of LOx and fuel, Inter-Propellant Seal (IPS) is used in a Turbopump. This paper presents a brief theoretical backgrounds of IPS and also reports preliminary test results. Tests were performed up to 1.5 MPa and 20,000 rpm and leakage performance of IPS was evaluated. As a result it was verified that leakage flow rate of IPS satisfied its design requirement.

  • PDF

An Experimental Study for Performance Evaluation of a Ceramic Heat Exchanger (세라믹 열교환기의 성능평가를 위한 실험적 연구)

  • Choi, Hyun-Soo;Shin, Dong-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.46-51
    • /
    • 2011
  • Exhaust gas of an industrial furnace used at such as metallurgy or ceramic manufacturing usually contains thermal energy with high temperature which can be recycled by heat exchanger. However, when the temperature of the exhaust gas is high such as more than $1,000^{\circ}C$, ordinary metallic heat exchanger cannot fully recover the heat due to the limitation of operating temperature depending on the material property. In the present study, a compact ceramic heat exchanger of cross flow type is introduced and evaluated by heat exchange rate and operating temperature. The ceramic heat exchanger can endure the gas temperature more than $1,300^{\circ}C$, and its volumetric heat exchanging rate exceeds 1 MW/$m^3$. The experimental data is also compared with the previous numerical result which shows reasonable agreement. Meanwhile, the gas leakage rate is measured to be about 3~4%, and heat loss to environmental air is about 23~26% of the fuel energy.

Consequence Analysis on the Leakage Accident of Hydrogen Fuel in a Combined Cycle Power Plant: Based on the Effect of Regional Environmental Features (복합화력발전소 내 수소연료 적용 시 누출 사고에 대한 피해영향범위 분석: 지역별 환경 특성 영향에 기반하여)

  • HEEKYUNG PARK;MINCHUL LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.698-711
    • /
    • 2023
  • Consequence analysis using an ALOHA program is conducted to calculate the accidental impact ranges in the cases of hydrogen leakage, explosion, and jet fire in a hydrogen fueled combined cycle power plant. To evaluate the effect of weather conditions and topographic features on the damage range, ALOHA is executed for the power plants located in the inland and coastal regions. The damage range of hydrogen leaked in coastal areas is wider than that of inland areas in all risk factors. The obtained results are expected to be used when designing safety system and establishing safety plans.

Analysis of the Deformed Unit Cell by Clamping Force Through the FEM and CFD Interaction (FEM과 CFD 연동을 통한 스택 체결 시 압력에 의해 변형된 단위 전지 해석)

  • YOO, BIN;LIM, KISUNG;JU, HYUNCHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.228-235
    • /
    • 2021
  • Polymer electrolyte membrane fuel cells (PEMFC) are currently being used in various transport applications such as drones, unmanned aerial vehicles, and automobiles. The power required is different according to the type of use, purpose, and the conditions adjusted using a cell stack. The fuel cell stack is compressed to reduce the size and prevent fuel leakage. The unit cells that make up the cell stack are subjected to compression by clamping force, which makes geometrical changes in the porous media and it impacts on cell performance. In this study, finite elements method (FEM) and computational fluid dynamics (CFD) analysis for the deformed unit cell considering the effects of clamping force is performed. First, structural analysis using the FEM technique over the deformed gas diffusion layer (GDL) considering compression is carried out, and the resulting porosity changed in the GDL is calculated. The PEMFC model is then verified by a three-dimensional, two-phase fuel cell simulation applying the physical properties and geometry obtained before and after compression. The detailed simulation results showed different concentration distributions of fuel between the original and deformed geometry, resulting in the difference in the distribution of current density is represented at compressed GDL region with low oxygen concentration.

MIT PEBBLE BED REACTOR PROJECT

  • Kadak, Andrew C.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.95-102
    • /
    • 2007
  • The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis.

A novel DC-DC Converter for 3[kW] Fuel Cell System Residential Application (3[kW]급 주택용 연료전지시스템에 사용되는 새로운 DC-DC 컨버터)

  • Lee, S.H.;Mun, S.P.;Lee, H.W.;Suh, K.Y.;Kwon, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.362-364
    • /
    • 2006
  • This paper presents a novel DC-DC Converter for 3 [kW] Fuel Cell System Residential Application. Phase shifted control is employed to regulate the output voltage and achieve soft switching. The transformer leakage inductance is utilized effectively to achieve zero voltage turn on for the power semiconductor switches. The current doubler rectifier has only one diode drop. The transformer secondary winding current rating is one half the load current. The overall effciency of the converter is improved.

  • PDF