• 제목/요약/키워드: fuel gas

검색결과 4,082건 처리시간 0.026초

합성연료 제조를 위한 GTL(Gas To Liquid) 기술동향 (GTL(Gas To Liquid) Technologies Trend for Synthetic Fuel Production)

  • 정병훈;한정식
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.717-720
    • /
    • 2011
  • 석유자원 고갈, 높은 원유가격 문제 그리고 온실가스인 $CO_2$ 에 의한 지구온난화 문제 때문에 바이오 매스를 이용한 GTL(Gas To Liquid) 공정으로 제조하는 청정 합성연료에 대한 관심이 크게 증가하고 있다. 본 논문에서는 GTL 기술의 3가지 핵심인 천연가스 개질반응, 피셔-트롭스 합성 그리고 물성조절 공정에 관한 기술을 설명하고 각국의 개발현황을 비교하였다.

  • PDF

Characteristics of NOx Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho, Eun-Seong;Chung, Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2303-2309
    • /
    • 2004
  • Flue gas recirculation (FGR) is a method widely adopted to control NOx in combustion system. The recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance a much improved reduction in NOx per unit mass of recirculated gas, as compared to the conventional FGR in air. In the present study, the effect of FGR/FIR methods on NOx reduction in turbulent swirl flames by using N$_2$ and CO$_2$ as diluent gases to simulate flue gases. Results show that CO$_2$ dilution is more effective in NO reduction because of large temperature drop due to the larger specific heat of CO$_2$ compared to N$_2$ and FIR is more effective to reduce NO emission than FGR when the same recirculation ratio of dilution gas is used.

농용 디젤기관에서 매연과 NOx의 동시저감에 관한 실험적 연구 (An Experimental Study on Simultaneous Reduction of Smoke and NOx in a Agricultural Diesel Engine)

  • 최승훈;오영택
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.85-91
    • /
    • 2003
  • In this study, the potential possibility of oxygenated fuel such as Methyl tertiary butyl ether (MTBE) was investigated for the sake of exhausted smoke reduction from diesel engine. MTBE has been used as a fuel additive blended into unleaded gasoline to improve octane number, but the study of application for diesel engine was incomplete. Because MTBE includes oxygen content approximately 18%, it is a kind of oxygenated fuel that the smoke emission of MTBE is reduced remarkably compared with commercial diesel fuel. But, the NOx emission of MTBE blended fuel is increased compared with commercial diesel fuel. And, it was tried to analyze not only total hydrocarbon but individual hydrocarbon components from $C_1$ to $C_6$ in exhaust gas using gas chromatography to seek the reason for remarkable reduction of smoke emission. Individual hydrocarbons($C_1$~$C_6$) as well as total hydrocarbon of oxygenated fuel are reduced remarkably compared with diesel fuel. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission has been investigated, too. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel and cooled EGR method.

신경회로망을 이용한 정상상태에서의 자동차 엔진의 공연비제어 (Air-Fuel Ratio Control of Automobile Engines in Steady States by Neural Networks)

  • 최종호;원영준;고상근;노승탁
    • 대한기계학회논문집
    • /
    • 제16권11호
    • /
    • pp.2119-2125
    • /
    • 1992
  • 본 연구에서는 현재 사용되고 있는 산소센서의 단점을 극복할 수 있는 방법을 광역공연비센서처럼 공연비를 추정할 수 있는 방법을 연구한다. 그 방법으로 신경회 로망을 사용한 배기가스의 공연비 추정기(estimator)를 구성한다. 그리고 이 추정기 를 이용한 공연비 제어기를 설계하고 실제 MPI엔진에 적용하여 그 성능을 알아 보겠다.

가솔린 엔진의 배기 열교환기가 촉매 온도에 미치는 영향에 관한 연구 (Effect of Exhaust Heat Exchanger on Catalytic Converter Temperature in an SI Engine)

  • 이석환;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.9-16
    • /
    • 2004
  • Close-coupled catalyst (CCC) can reduce the engine cold-start emissions by utilizing the energy in the exhaust gas. However, in case the engine is operated at high engine speed and load condition, the catalytic converter may be damaged and eventually deactivated by thermal aging. Excess fuel is sometimes supplied intentionally to lower the exhaust gas temperature avoiding the thermal aging. This sacrifices the fuel economy and exhaust emissions. This paper describes the results of an exhaust heat exchanger to lower the exhaust gas temperature mainly under high load conditions. The heat exchanger was installed between the exhaust manifold and the inlet of close-coupled catalytic converter. The exhaust heat exchanger successfully decreased the exhaust gas temperature, which eliminated the requirement of fuel enrichment under high load conditions. However, the cooling of the exhaust gas through the heat exchanger may cause the deterioration of exhaust emissions at cold start due to the increment of catalyst light-off time.

가스터빈-연료전지 혼합형 고효율 발전시스템 (High Efficiency Gas Turbine-Fuel Cell Hybrid Power Generation System)

  • 이진근;양수석;손정락;송락현;조형희
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.347-353
    • /
    • 2001
  • A combined cycle, 'HYBRID', is emerging as a new power generation technology that is particularly suitable for the distributed power generation system, with high energy efficiency and low pollutant emission. Currently micro gas turbines and fuel cells are attracting a lot of attention to meet the future needs in the distributed power generation market. This hybrid system may have every advantages of both systems because a gas turbine is synergistically combined with a fuel cell into a unique combined cycle. The hybrid system is believed to become a leading runner in the distributed power generation market. This paper introduces a current plan associated with the development of the hybrid system which consists of a micro gas turbine and a solid-oxide fuel cell(SOFC).

  • PDF

분산발전을 위한 가스터빈-연료전지 하이브리드 시스템 (Gas Turbine and Fuel Cell Hybrid System for Distributed Power Generation)

  • 김재환;손정락;노승탁;김동섭
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.354-360
    • /
    • 2001
  • Hybrid energy system of fuel cell and gas turbine is discussed as the system to be used in the distributed power generation. Discussion is first directed to the distributed power generation system which is expected to be more popularly introduced both in urban and isolated areas. In the next some characteristic features of fuel cell and micro gas turbine are shortly described. In the last discussion is turn to the fuel cell and micro gas turbine hybrid system. In particular, performance characteristics of a representative SOFC/MGT hybrid system are investigated through the concept design at various power capacity levels.

  • PDF

고분자 연료전지 스택에서 질소 크로스오버 특성에 관한 연구 (Characterization of Nitrogen Gas Crossover in PEM Fuel Cell Stacks)

  • 백경돈;김민수
    • 대한기계학회논문집B
    • /
    • 제33권3호
    • /
    • pp.207-214
    • /
    • 2009
  • Crossover of nitrogen from cathode to anode is inevitable in typical membranes used in PEM fuel cells. This crossovered nitrogen normally accumulates in the hydrogen recirculation system at anode side channels. Excessive buildup of nitrogen in the anode side lowers the relative hydrogen concentration and finally affects the performance of fuel cell stack. So it is very important to analysis the nitrogen gas crossover at various operating conditions. In this study, characterization of nitrogen gas crossover in PEM fuel cell stack was investigated. The mass spectroscopy (MS) has been applied to measure the amount of the crossovered nitrogen gas at the anode exit. Results show that nitrogen gas crossover rate was affected by current density, anode and cathode stoichiometric ratio and operating pressure. Current density, anode stoichiometric ratio and anode operating pressure do not affect nitrogen crossover rate but anode exit concentration of nitrogen. Cathode pressure and stoichiometric ratio largely affect the nitrogen crossover rate.

발전용 희박예혼합 가스터빈 연소기 내부유동 특성 해석 (A Numerical Analysis of the Flow Characteristics in a Lean Premixed Gas Turbine Combustor for Power Generation)

  • 정재화;서석빈;안달홍;김종진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.847-852
    • /
    • 2000
  • Three dimensional CFD investigations are carried out to understand the complex flow field in a gas turbine combustor with multi-element fuel injectors. The gas turbine considered here is the GE7FA model which has aye fuel injectors in each combustor can and utilizes lean-premixed combustion to meet nitric oxide emission requirements. Detailed three-dimensional flow characteristics and fuel-air mixture formation process inside the fuel nozzle and gas turbine combustor including five swirl nozzle tips are analyzed using commercial FLUENT code.

  • PDF

가스추진선박의 가스연료공급시스템에 대한 CFD를 이용한 정량적 위험도 해석에 관한 연구 (A Study on the Quantitative Risk Analysis Using CFD for the Fuel Gas Supply System of Gas Fueled Ship)

  • 김기평;김대헌;이영호
    • 대한조선학회논문집
    • /
    • 제54권1호
    • /
    • pp.1-9
    • /
    • 2017
  • LNG has significant advantages in regard to environmental aspects comparing with conventional fuel oil. In fact, it is estimated that NOx and SOx emission can be reduced by about 90% and 100%, respectively in case of using LNG as a fuel. LNG-fuelled ship has been considered to be the best option both from an environmental and an economic point of view. Along with these trends, some major shipyards and Classification Societies have started to carry out the risk-based system design for LNG-fuelled ship such as passenger ship, platform supply vessel and large container vessel etc. However, new conceptual gas fuelled ship has high risk level compared with vessel using traditional crude oil especially in view of gas explosion accident. Therefore safety area where installed fuel gas supply system is required risk based system design with special considerations. On this paper, the entire process necessary for the quantitative risk analysis was explained to meet the satisfactory safety level of gas fuelled ship.