• Title/Summary/Keyword: fuel flow control

Search Result 385, Processing Time 0.023 seconds

Surge Control of Small Turbojet Engines with Fuzzy Inference Method (소형 터보제트 엔진의 서지 제어를 위한 퍼지추론 기법)

  • Jie, Min-Seok;Hong, Seung-Beom
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2009
  • The surge control system in unmanned turbojet engine must be capable of accounting uncertainties from engine transient conditions, random fluctuations of key parameters such as air pressure and fuel flow and engine modeling errors. In this paper, taking into consideration of its effectiveness as well as system stability, a fuzzy PI controller is proposed. The role of the fuzzy PI controller is to stabilize the unmanned aircraft upon occurring unexpected engine surge. The proposed control scheme is proved by computer simulation using a linear engine model. The simulation results on the state space model of a small turbojet engine illustrate the proposed control system achieves the desired performance.

  • PDF

Fuel Injection Control of Vehicles Using Fuzzy Control Technique (퍼지 제어 기법을 이용한 차량의 연료 제어)

  • Kim, Kwang-Baek;Woo, Young-Woon;Ha, Sang-An
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1013-1018
    • /
    • 2007
  • In general, there are many sensors for fuel injection control such as an air flow sensor, an air intake temperature sensor, a cooling water temperature sensor, a throttle position sensor, and a motor position sensor. In this paper, we proposed a method for controlling the amount of fuel consumption in cars using fuzzy control technique by temperature change of an air intake temperature sensor and air-fuel ratio, the ratio of air and fuel mixture. In the proposed method, the amount of fuel injection is controlled by fuzzy membership functions and fuzzy inference rules established for air-fuel ratio, air intake temperature, and final fuel compensation, after computing air-fuel values using each amount of air intake and each amount of fuel injection. We verified that the proposed method is more efficient than conventional methods in fuel injection control from the results of the simulation program.

Effect of air flow channel configuration on performance of direct methanol fuel cells. (공기극 채널 형상이 직접 메탄올 연료전지의 성능에 미치는 영향)

  • Hwang, Yong-Sheen;Choi, Hoon;Cha, Suk-Won;Lee, Dae-Young;Kim, Seo-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.137-140
    • /
    • 2007
  • We consider the optimum air flow channel design for DMFC's in the present study. The effect of pressure drop across the inlet and outlet of a stack on the performance of a DMFC is the optimization of such geometric parameters is crucial to minimize the parasitic power usage by the auxiliary devices such as fuel pumps and blowers. In this paper, we present how the pressure drop control can optimize the driving point of a DMFC stack. Further, we show how the optimal fuel utilization ratio can be achieved, not degrading the performance of DMFC stacks. Overall, we discuss how the flow channel design affects the selection of balance of plant(BOP) components, the design of DMFC systems and the system efficiency.

  • PDF

A Study on the Pressure Increment of Fuel Pump for GDI Engines Considering Leakage Flows (누설특성을 고려한 GDI 엔진용 연료펌프의 고압생성 증진에 관한 연구)

  • Na, Byung-Chul;Kim, Byoung-Soo;Choi, Suk-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.785-791
    • /
    • 2000
  • GDI (Gasoline Direct Injection) engines are considered as one of the candidates for next generation engines of passenger cars, which reduce exhaust emissions and fuel consumption. In GOI engines, a high-pressure gasoline supply system is required to directly inject the fuel to combustion chambers. Because of low lubricity of gasoline fuel, the clearance between a plunger and a barrel in GDI fuel pumps is too wide to achieve smooth hydrodynamic lubrication. Thus, it is difficult to generate high-pressure condition in GDI fuel pump since large amount of leakage flow occurs between the plunger and the barrel In this study, an optimum plunger design is presented to minimize leakage in the aspect of flow control. This paper analyzes leakage flow characteristics in the clearance to improve pumping performance of GDI fuel pumps. Effects of groove in the plunger are studied according to variations of depth and width. Evaluations of pumping performance are determined by the amount of pressure drop in the leakage path assuming a constant leakage flows. Both of turbulence and incompressible models are introduced in CFD (Computational Fluid Dynamics) analysis. Design parameters have been introduced to minimize leakage in limited space, and a methodological study on geometrical optimization has been conducted. As results of CFD analysis in various geometrical cases, optimum groove depths have been found to generate maximum sealing effects on gasoline fuel between the plunger and the barrel. This procedure offers a methodological way of an enhancement of plunger design for high-pressure GDI fuel pumps.

Effects of Various Densities and Velocities to Gaseous Hydrocarbon Fuel on Near Nozzle Flow Field in Laminar Coflow Diffusion Flames

  • Ngorn, Thou;Jang, Sehyun;Yun, Seok Hun;Park, Seol Hyeon;Lee, Joo Hee;Choi, Jae Hyuk
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.291-293
    • /
    • 2015
  • The experimental study on flow characteristic in various laminar coflow diffusion flame has been conducted with a particular focus on the buoyancy force exerted from gaseous hydrocarbon fuels. Methane ($CH_4$), Ethylene ($C_2H_4$) and n-Butane ($C_4H_{10}$) were used as fuels. Coflow burner and Schlieren technique were used to observe the fuel flow field near nozzle exit and flow characteristics in flames. The result showed that the vortices in n-Butane with density heavier than air were appeared near the nozzle exit with the strong negative buoyancy on the fuel stream. As Reynolds number increases by the control of velocity, the vortices were greater and the vortices tips were moved up from the nozzle exit. In addition, it can be found that the heated nozzle can affect to the flow fields of fuel stream near the nozzle exit.

  • PDF

Turbojet Engine Control Using Artificial Neural Network PID Controller With High Gain Observer (고이득 관측기가 적용된 터보제트엔진의 인공신경망 PID 제어기 설계)

  • Kim, Dae-Gi;Jie, Min-Seok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • In this paper, controller propose to prevent compressor surge and improve the transient response of the fuel flow control system of turbojet engine. Turbojet engine controller is designed by applying Artificial Neural Network PID control algorithm and make an inference by applying Levenberg-Marquartdt Error Back Propagation Algorithm. Artificial Neural Network inference results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbojet engine for UAV. High Gain Observer is used to estimate to compressor rotation speed of turbojet engine. Using MATLAB to perform computer simulations verified the performance of the proposed controller. Response characteristics pursuant to the gain were analyzed by simulation.

A Comprehensive Study on Fuel Injector Test Bench for Heavy Duty Engine

  • Das, Shubhra Kanti;Thongchai, Sakda;Lim, Ocktaeck
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.195-201
    • /
    • 2015
  • This study discusses a fuel injector test bench containing a mechanical type fuel supply system for heavy duty diesel engine. The main focus of this study was to evaluate the design stability of the test bench, which basically measures the injector durability of a multi-hole heavy duty injector by using pure diesel as a test fuel. In this experiment, diesel spray was controlled by a specially designed control box and all the experiments were carried out to measure e.g. fuel injection pressure and fuel injection quantity to understand the injection status which is interlinked with the stability factor of total test bench design. Also, the durability test was performed to understand the heavy duty operation lastingness of the designed system and the flow rate of the installed distributor pump in the fuel supply system of this studying test bench was compared with LO-1 and LO-2 pump. The results of the above mention tests revealed that the injector test bench design and control system can serve the purpose for heavy duty injector.

A Study on the Development of an Electronic Control System for Optimal Start and Idle Speed Control in Gasoline Engines (기솔린 기관에서 최적의 시동 및 공회전 속도제어를 위한 전자 제어장치 개발에 관한 연구)

  • 김태훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1148-1160
    • /
    • 2001
  • An electronic control system of the automobile engine for optimal start and idle speed control has been developed. This system employs the microcoputer-based electronic control unit and crank angle sensor for precise control on fuel injection, ignition timing, and idle speed more quickly and accurately at the start and idling. Consequently, the number of misfire can be reduced during been affected by air flow rate, idle quality(roughness), spark timing, fuel injection, water temperature, and load, Thus, this electronic control system strivers to reach the optimal idle operating point, defined the lowest idle speed(fuel economy) and idle quality(roughness), under any engine operating conditions.

  • PDF

An electric conductive-probe technique for measuring the liquid fuel layer in the intake manifold

  • Kajitani, S.;Sawa, N.;Rhee, K.T.;Hayashi, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1184-1189
    • /
    • 1990
  • In order to investigate liquid fuel filming over the intake manifold wall, an electrode-type probe has been developed by lines of authors and this probe was employed in a single cylinder two and four-stroke cycle engine and in a four cylinder four-stroke engine operated by neat methanol fuel. The performance of the probe was dependent upon several parameters including the liquid fuel layer thickness, temperature, additive in the fuel, and electric power source (i.e., AC and voltage level) and was independent of other variables such as direction of liquid flow with respect to the probe arrangement. Several new findings from this study may be in order. The flow velocity of the fuel layer in the intake manifold of engine was about (if the air velocity in the steady state operation, the layer thickness of liquid fuel varied in both the circumferential and longitydinal directions. In the transient operation of the engine, the temporal variation of fuel thickness was determined, which clearly suggests that there was difference between fuel/air ratio in the intake manifold and that in the cylinder. The variation was greatly affected by the engine speed, fuel/air ratio and throttle opening. And the variation was also very significant from cylinder to cylinder and it was particularly strong different engine speeds and throttle opening.

  • PDF

A High Pressure Fuel Control and its Injection Characteristics (고압 연료 제어와 분사 특성)

  • Kim, S.H.;Lee, Y.G.;Kim, J.U.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.123-133
    • /
    • 1995
  • An injection control valve(ICV) was designed to control the fuel flow between a common rail and an injector with two commercial solenoids. To improve the performance of ICV, the characteristic method was applied. With this method, the flow characteristics in the ICV and the injector were studied and the parameters which affect the injection characteristics were also studied. From this study, following results were obtained. The injection duration can be controlled and with modifications of the effective valve stroke of ICV, the injection quantity and duration can be reduced to desired amount. Also the injection quantity and pressure can be controlled by reducing the hole size of the injector without the variation of the injection duration. For some conditions, the desired injection characteristics can be obtained by the changes of the valve timing, the effective valve stroke, the open pressure of the injector and the hole size of the injector.

  • PDF