• 제목/요약/키워드: fuel distribution

검색결과 1,400건 처리시간 0.02초

전자유압식 분사계에 의한 초고압 디젤분무의 입경분포에 관한 연구 (A Study on the Droplet Size Distribution of Ultra High Pressure Diesel Spray on Electronic Hydraulic Fuel Injection System)

  • 장세호;안수길
    • 동력기계공학회지
    • /
    • 제2권1호
    • /
    • pp.25-30
    • /
    • 1998
  • In order to investigate the droplet size distribution and Sauter Mean Diameter in a ultra high pressure diesel spray, fuel was injected with ultra high pressure into the environments of high pressure and room temperature by an Electronic Hydraulic Fuel Injection System. Droplet size was measured with the immersion liquid sampling technique. The immersion liquid was used a mixture of water-methycellulose solution and ethanol. The Sauter Mean Diameter decreased with increasing injection pressure, with a decrease environmental pressure (back pressure) and nozzle diameter. Increasing the injection pressure makes the fuel density distribution of the spray more homogeneous. An empirical correlation was developed among injection pressure, air density, nozzle diameter and the Sauter Mean Diameter of spray droplets.

  • PDF

항공분야 온실가스 감축을 위한 바이오항공유 제조기술 (Bio-Jet Fuel Production Technologies for GHG Reduction in Aviation Sector)

  • 김재곤;박조용;임의순;민경일;박천규;하종한
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.609-628
    • /
    • 2015
  • Thie study presents the biomass-derived jet (bio-jet) fuel production technologies for greenhouse gas (GHG) reduction in aviation sector. The aviation sector is responsible for the 2% of the world anthropogenic $CO_2$ emissions and the 10% of the fuel consumption: airlines' costs for fuel reach 30% of operating costs. In addition, the aviation traffic is expected to double within 15 years from 2012, while fuel consumption and $CO_2$ emissions should double in 25 years. Biojet fuels have been claimed to be one of the most promising and strategic solutions to mitigate aviation emissions. This jet fuel, additionally, must meet ASTM International specifications and potentially be a100% drop-in replacement for current petroleum jet fuel. In this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways are reviewed for process, economic analysis and life cycle assessment (LCA) on conversion pathways to bio-jet fuel.

국내 표준연료(휘발유) 도입 필요성 검토 연구 (A feasibility study on Introducing the Reference Fuel(Gasoline) for Testing Vehicles in South Korea)

  • 강형규;성상래;송호영;황인하;하종한;나병기
    • 한국응용과학기술학회지
    • /
    • 제33권4호
    • /
    • pp.824-835
    • /
    • 2016
  • 2015년 기준 자동차 등록대수는 약 2,100만대를 넘어 1가구당 1.07대를 보유하고 있는 실정이나[1], 국내 자동차용 표준연료에 대한 기준은 부재한 상황이다. 자동차용 표준연료(reference fuel)는 차량의 연비와 배출가스를 인증하거나 새로운 자동차를 개발할 때 차량의 성능 등을 평가하기 위해 사용하는 연료를 의미한다. 현재 국내에는 차량의 배출가스, 성능, 연비시험 등을 위해 유통연료를 사용하고 있으며, 유통연료는 석유 및 석유대체연료사업법과 대기환경보전법 상의 품질기준을 만족하지만 각 제조사의 원료와 공정 등에 따라 연료의 물성차이가 있어 차량 시험 시 편차가 발생할 수 있다. 본 연구에서는 국내 유통되는 휘발유 품질모니터링 분석결과를 바탕으로 표준연료 기준(안)을 설정하고, GDI와 MPI 연료 분사 방식의 차량에 적용하여 비교 평가한 결과, 실제 유통연료를 사용했을 때 최대 3.8%까지 발생하는 연비차이가 1.1%까지 감소함을 확인할 수 있었다.

FUEL ECONOMY IMPROVEMENT FOR FUEL CELL HYBRID ELECTRIC VEHICLES USING FUZZY LOGIC-BASED POWER DISTRIBUTION CONTROL

  • Ahn, H.S.;Lee, N.S.;Moon, C.W.;Jeong, G.M.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.651-658
    • /
    • 2007
  • This paper presents a new type of fuzzy logic-based power control strategy for fuel cell hybrid electric vehicles designed to improve their fuel economy while maintaining the battery's state of charge. Since fuel cell systems have inherent limitations, such as a slow response time and low fuel efficiency, especially in the low power region, a battery system is typically used to assist them. To maximize the advantages of this hybrid type of configuration, a power distribution control strategy is required for the two power sources: the fuel cell system and the battery system. The required fuel cell power is procured using fuzzy rules based on the vehicle driving status and the battery status. In order to show the validity and effectiveness of the proposed power control strategy, simulations are performed using a mid-size vehicle for three types of standard drive cycle. First, the fuzzy logic-based power control strategy is shown to improves the fuel economy compared with the static power control strategy. Second, the robustness of the proposed power control strategy is verified against several variations in system parameters.

차축의 중량 분포와 타이어의 공기압이 트랙터 작업의 연료 효율에 미치는 영향 (Effects of Distribution of Axle Load and Inflation Pressure of Tires on Fuel Efficiency of Tractor Operations)

  • 이진웅;김경욱;김동현;최규정
    • Journal of Biosystems Engineering
    • /
    • 제36권5호
    • /
    • pp.303-313
    • /
    • 2011
  • This study was conducted to investigate the effects of axle weight distribution and inflation pressure of tire on the fuel economy of tractors as well as operational range of tractor engine in terms of engine speed and power when a 4WD tractor of 38.2 kW rated power at 2500 rpm is used for plowing and flooded-field rotavating in paddy fields. (1) Plowing operation required an average engine power of 9.6~13.5 kW which equals 25~35% of rated PTO power. Engine speed ranged from 1,320.4 to 1,737.4 rpm, work velocity from 3.4 to 4.8 km/h, and fuel consumption from 3.2 to 4.2 L/h, respectively. (2) Flooded-field rotavating required an average engine power of 11.5~18.5 kW which equals 30~48.4% of rated PTO power. Out of this 6.2~12.2 kW was used for PTO power. Engine speed ranged from 1,557 to 2,067 rpm, work velocity from 2.5~5.4 km/h and fuel consumption from 3.2~5.5 L/h, respectively. (3) Axle weight distribution, inflation pressure of tire and moisture content of soil did not affect significantly the specific volumetric fuel consumption but affected significantly the fuel consumption per unit area of operation. Fuel savings amounted to 65% in plowing operation and 20% in flooded-field rotavating when the axle weight distribution and inflation pressure of tire were optimally adjusted. (4) Optimal adjustment of axle weight distribution and inflation pressure of tire are expected to save fuel consumption by 10~65% per unit area of operation in plowing and 10~20% in flooded-field rotavating.

유한요소법을 이용한 고분자전해질연료전지 기체확산층의 응력분포 연구 (The Stress Distribution Analysis of PEMFC GDL using FEM)

  • 김철현;손영준;박구곤;김민진;이종욱;김창수;최유송;조성백
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.468-475
    • /
    • 2012
  • A proper stacking force and assembly are important to the performance of fuel cell. Improper assembly pressure may lead to leakage of fuels and high interfacial contact resistance, excessive assembly pressure may result in damage to the gas diffusion layer and other components. The pressure distribution of gas diffusion layer is important to make interfacial contact resistance less for stack performance. To analyze the influence of design parameter factors for pressure distribution, and to optimize stack design, DOE (Design of Experiment) was used for polymer electrolyte membrane fuel cell stack pressure test. As commonly known, the higher clamping force improves the fuel cell stack performance. However, non-uniformity of stress distribution is also increased. It shows that optimization between clamping force and stress distribution is needed for well designed structure of fuel cell stack. In this study, stack design optimization method is suggested by using FEM (Finite Element Methode) and DOE for light-weighted fuel cell stack.

평판형 연료전지 스택의 제조를 위한 매니폴드 형상별 압력분포 시뮬레이션 (Pressure Distribution Simulation on Geometrical Manifolds Structure for Fabrication of a Planar-type Fuel-Cell Stack)

  • 박세준;최용성;이경섭
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.609-614
    • /
    • 2009
  • A fuel-cell power system among various alternative power sources has many advantages such as comparatively independable circumstances, high-efficient, and heat-recyclable, thus it is now able to be up to hundreds MWh-scaled through improving feasibility and longevity of it. During the last few decades, numerous research results has been investigated to expand interest in fuel-cell technology. This study presents pressure distribution on the geometrical manifold structures, which are U-type and Z-type, of a planar-type fuel-cell stack by simulated with computational fluid dynamics(CFD). Then, electrical performance of a 200W fuel-cell stack, which is U-type, was diagnosed after pre-conditioning operation. The stack has electrical characteristics ; 22V, 10A, 220W, and current density $200mA/cm^2$.

남극유 대체연료 적합성 연구 (Study of Alternative Fuel Suitability for Special Antarctic Blend Diesel)

  • 임영관;김지연;김종렬;하종한
    • 공업화학
    • /
    • 제28권4호
    • /
    • pp.460-466
    • /
    • 2017
  • 극지방은 혹한의 날씨로 인해 일반 석유제품을 사용할 경우, 석유제품 내 왁스 성분 등이 고체상으로 석출되어 원활한 연료공급 등에 문제발생을 일으킬 수 있다. 따라서 극지방에서 사용하는 석유제품은 혹한의 온도에 적합하게 생산, 판매되고 있지만 해외로부터 공급받고 있어, 수급의 어려움이 존재한다. 본 연구에서는 기존 남극유를 대체할 수 있는 석유제품을 검토하기 위해 기존 연료에 대한 연료적 특성을 분석한 뒤, 저온특성이 우수한 항공유에 윤활성 향상제를 일정농도 첨가하여, 남극유 대체연료로서 연료적 특성을 분석하였다. 분석결과, 윤활성 향상제인 R621A제품의 윤활성이 가장 우수하였으며, 윤활성 향상제 첨가량이 증가할수록 윤활성이 증가하였지만, 1000 mg/L만 첨가하여도 충분한 윤활성 향상효과를 보였다. 따라서 항공유에 윤활성 향상제를 첨가한 대체연료는 극지방의 혹한 기온에서 사용하여도 큰 문제가 없을 것으로 판단된다.

직분식 가솔린엔진에서 피스톤 형상이 연료 혼합기의 형성과 거동에 미치는 영향 . (Effect of Piston Cavity Geometry on Formation and Behavior of Fuel Mxture in a DI Gasoline Engine)

  • 김동욱;강정중;최경민;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.82-89
    • /
    • 2005
  • This study was performed to investigate the behavior and spatial distribution of fuel mixtures with different wall angle and diameter of piston cavity in a DI gasoline engine. The spatial distribution of fuel mixtures after impingement of the spray against a piston cavity is one of the most important. factors for the stratification of fuel mixture. Thus, it is informative to understand in detail the behavior and spatial distribution of fuel mixtures after impingement in the cavity. Two dimensional spray fluorescence images of liquid and vapor phase were acquired to analyze the behavior and distribution of fuel mixtures inside cylinder by exciplex fluorescence method. The exciplex system of fluorobenzene/DEMA in non-fluorescing base fuel of hexane was employed. Cavity wall angle was defined as an exterior angle of piston cavity. Wall angles of the piston cavity were set to 30, 60 and 90 degrees, respectively. The spray impinges on the cavity and diffuses along the cavity wall by its momentum. In the case of 30 degrees, the rolling-up moved from the impinging location to the round and fuel-rich mixture distributed at periphery of cylinder. In the case of 60 and 90 degrees, the rolling-up recircurated in the cavity and fuel mixtures concentrated at center region. High concentrated fuel vapor phase was observed in the cavity with 90 degrees. From. present study, it was found that the desirable cavity wall angle with cavity diameter for stratification in a Dl gasoline engine was demonstrated.

Improving the Neutronic Characteristics of a Boiling Water Reactor by Using Uranium Zirconium Hydride Fuel Instead of Uranium Dioxide Fuel

  • Galahom, Ahmed Abdelghafar
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.751-757
    • /
    • 2016
  • The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide ($UO_2$) and uranium zirconium hydride ($UZrH_{1.6}$) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with $UO_2$ contains $8{\times}8$ fuel rods while that fueled with $UZrH_{1.6}$ contains $9{\times}9$ fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. $UZrH_{1.6}$ fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.